Asymptotic (short-wave) equivalence of one-dimensional Schrodinger equations by formal canonical transformations and its generalizations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 244475
(http://iopscience.iop.org/0305-4470/24/19/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:27

Please note that terms and conditions apply.

Asymptotic (short-wave) equivalence of one-dimensional Schrödinger equations by formal canonical transformations and its generalizations

Vincenzo Aquilanti, Simonetta Cavalli and Mikhail B Sevryuk \dagger
Dipartimento đi Chimica dell'Universitá, 06100 Perugia, Italy

Received 14 January 1991, in final form 13 May 1991

Abstract

We define the asymptotic equivalence of systems of two ordinary first-order differential equations with an arbitrary finite number and multiplicities of turning points. The theory is exemplified by the short-wave (semiclassical) equivalence of time-independent one-dimensional Schrödinger equations. We describe the set of all transformation matrices realizing the equivalence; the use of their determinant properties simplifies the calculations needed for applications. For the particular case of Schrödinger equations the transformation matrix can be chosen to be canonical.

1. Introduction

Many phenomena in nuclear, atomic and molecular physics and related branches of science can be described within the framework of a semiclassical (i.e. short-wave) approach, which heavily exploits the fact that the Planck constant \hbar may be effectively considered as a small parameter (e.g. see, Fröman and Fröman 1965, Berry and Mount 1972, Landau and Lifshitz 1977, Child 1980, Maslov and Fedoriuk 1981, Eu 1984, Keller 1985). Therefore, from the mathematical viewpoint, semiclassical mechanics is a particular case of the asymptotic theory of differential equations. As a concrete example, consider the time-independent Schrödinger equation for a system of one degree of freedom:

$$
\begin{equation*}
\left(\hbar^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+p(x)\right) \Psi(x)=0 \tag{1}
\end{equation*}
$$

where $p(x)=2 m(E-V(x)), m$ is the mass of the particle, $V(x)$ the potential and E the energy. In physical applications such as the scattering theory one often has to deal with solutions of this equation defined throughout the domain over which the independent variable x ranges. One of the powerful methods of studying the solutions Ψ of equation (1) is to represent them (to an arbitrary order of \hbar) in terms of solutions Q and their first derivatives Q^{\prime} of another equation of the same form,

$$
\begin{equation*}
\left(\hbar^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}}+f(z)\right) Q(z)=0 \tag{2}
\end{equation*}
$$

which is called a related or comparison equation and whose solutions are supposed to be known or easier to investigate (e.g. $f(z)$ being a polynomial). This approach, first proposed and developed by Langer (1949), stems from techniques best known as

[^0]the Liouville-Green to mathematicians and JwK to physicists and can be thought as a rigorous variant of phase integral methods (see Heading 1962, Guillemin and Sternberg 1977). The representation may be looked for in the form
\[

$$
\begin{equation*}
\Psi(\varphi(z))=M(z) Q(z)+\hbar \Gamma(z) Q^{\prime}(z) \tag{3}
\end{equation*}
$$

\]

where, in accordance with the asymptotic framework, the coefficients M and Γ are in fact convergent or formal series in powers of \hbar. Langer's method has been widely disseminated and employed in many works (for a historical survey see McHugh (1971)). A similar approach for systems of equations was devised by Sibuya (1958), Okubo (1961) and Wasow (1963). A lucid exposition of the principal ideas of the method can be found in Langer (1960) and Wasow (1985). An extensive study of an equation of the form of equation (2) with the function $f(z)$ being a polynomial is presented in Sibuya (1975).

It turns out that the choice of a comparison equation (2) and the procedure of constructing the functions φ, M and Γ in equation (3) are mainly determined by the number and the orders of turning (or transition) points of the original equation (1), i.e. points x at which $p(x)=0$. Langer (1949) considered the case of one simple (i.e. of first order) turning point. Later Kazarinoff (1958) and Langer (1959) treated the case of two turning points of first order, and McKelvey (1955) the case of one turning point of second order. The latter case was also studied by Lee (1969) and O'Malley (1970). An interesting situation of two coalescing simple turning points was dealt with by Olver (1975). Nishimoto (1973) and Sibuya (1974) considered the case of a simple turning point of any integer order. In a remarkable paper by Lynn and Keller (1970) the method was extended to functions $p(x)$ in equation (1) having an arbitrary finite number of turning points of any order. This paper also treated systems of two first-order differential equations. Applications of the uniform asymptotic expansions obtained in Lynn and Keller (1970) to eigenvalue problems are exemplified by Anyanwu and Keller (1975) and to stability problems for Hill's equations, by Weinstein and Keller (1987).

For the case of a single simple turning point, Cherry $(1949,1950)$ devised a somewhat different approach based on transformations of the independent variable. He used a comparison equation as well, but in his construction the asymptotic expansion did not involve the derivative of a solution of that equation. Zauderer (1972) and Rubenfeld and Willner (1977) generalized Cherry's technique to an arbitrary number and structure of turning points. The results of Zauderer, Rubenfeld and Willner are formal, like those of Lynn and Keller. However, for a single turning point of an arbitrary order Willner and Rubenfeld (1976) showed that their expansions are indeed asymptotic. The approach of Willner and Rubenfeld (1976) resembles that of Sibuya (1974).

Langer's comparison equation method was also used on some higher-order equations. Langer (1955) obtained the uniform asymptotic expansion for a certain type of third-order equations, and Langer (1957) and Lin and Rabenstein (1960, 1969), of fourth-order equations. Anyanwu and Keller (1978) extended the construction of Lynn and Keller (1970) to second-order differential equations and systems of two first-order equations in infinite-dimensional Hilbert spaces and applied their results to obtain the asymptotic solution for propagation of a wave in a slowly varying waveguide.

Lynn and Keller (1970), Zauderer (1972), Rubenfeld and Willner (1977) and Anyanwu and Keller (1978) considered uniform asymptotic expansions of solutions of a given equation, i.e. expansions valid throughout a whole domain containing several turning points. A closely related problem is that of connecting the Liouville-Green or

JWKB approximations defined separately in different sectors with the vertex at a given turning point or in different turning-point-free subintervals of the range interval of the independent variable. Olver (1977a) found such connection formulae under the hypothesis that the real independent variable ranges in an interval containing a single turning point of any integer order. Similar results in somewhat different situations (e.g. for the complex independent variable) were obtained by Nishimoto (1973), Sibuya (1974) and Leung (1975). Then Olver (1977b) generalized his formulae to the case of an arbitrary finite number of turning points of any orders. These two papers by Olver also contain a historical survey on the connection formulae approach. Leung (1977) applied connection relations to eigenvalue problems. Connection formulae for an arbitrary number of simple turning points in the complex plane were treated in, for example, Evgrafov and Fedoryuk (1966). General connection formulae for equations in the complex plane were derived by Olver (1978).

Uniform methods are also useful in the asymptotic analysis of differential equations involving simultaneously turning points and singular points. Recent research of such equations and examination of related problems (of which the most important ones are resonances and exponential precision asymptotics) are exemplified by Meyer (1980), Hanson and Tier (1981), Tier and Hanson (1981), Wazwaz and Hanson (1986a, b), Hanson and Wazwaz (1988) and Hanson (1990). The uniform and exponential asymptotic technique is applied for studying the Stokes phenomenon in Berry (1989) and Berry and Howls (1990).

In the present paper we use the comparison equation method in Langer's formulation, following basically the procedure for constructing a representation developed by Lynn and Keller (1970), but while in Lynn and Keller (1970) and most related works the authors' attention was concentrated on the choice of the comparison equation (2) with a function $f(z)$ of the prescribed form, we examine mainly the properties of a transformation converting solutions of equation (2) into solutions of equation (1). So, we consider equations (1) and (2) as having 'equal rights' and, not confining ourselves to any particular form of the functions $p(x)$ and $f(z)$, describe the set of all the formal uniform transformations. If this set is not empty, we call the equations asymptotically equivalent. The solutions of asymptotically equivalent equations exhibit similar qualitative behaviour. In fact, we consider not only one-dimensional Schrödinger equations but arbitrary systems of two linear homogeneous first-order differential equations with a small parameter at the derivatives. Note that recently the problem of the strict equivalence for differential equations and operators has been tackled by grouptheoretical methods in Kamran and Olver (1989a, b, 1990).

For instance, Kamran and Olver (1989b) solved completely the strict equivalence problem for two second-order linear differential operators on the line. However, the asymptotic equivalence with respect to a small parameter and the strict equivalence involving no small parameters have proved to be drastically different. If one froze a value of the small parameter in two asymptotically equivalent equations (e.g. put $\hbar=1.0546 \times 10^{-34} \mathrm{Js}$) and treated them as individual equations without any parameter, they would not, generally speaking, be strictly equivalent. Moreover, in our case they may well be even far from being strictly equivalent, because the small parameter stands at the derivatives. For example, according to Kamran and Olver (1989b), equations (1) and (2) with x, z real and p, f analytic are strictly equivalent if and only if the functions $p(x)$ and $f(z)$ are rescaled translates of each other: $f(z)=a^{2} p(a z+b)$ with $a \neq 0$ and b arbitrary constants. This result shows that strictly equivalent Schrödinger equations are met with very rarely, and almost no information on the asymptotic
equivalence can be obtained in the framework of strict equivalence. The solutions of strictly equivalent equations are quantitatively similar.

Our second purpose is to show how very simple matrix-theoretical arguments, such as the properties of the transformation determinant, allow the number of integrations to be halved in the recursive procedure devised in Lynn and Keller (1970), which seems to be of importance for practical applications. The calculation and persistent use of the transformation determinant is the main innovation of our paper. Relevant examples will be given elsewhere.

We treat only the case where all the functions are defined in some domains of the complex plane and are holomorphic, but an analogous theory can be developed for C^{∞} functions in intervals of the real line as well.

The paper is organized as follows. After a precise definition of the asymptotic equivalence of systems in section 2, we discuss the relations between leading-order terms of asymptotically equivalent systems, the role of turning points and the independent variable changes in section 3. A description of all the transformation matrices which link the solutions of asymptotically equivalent systems and a detailed presentation of the recursive algorithm for constructing these matrices are given in section 4. In section 5 we specialize the calculations of the previous section to Schrödinger equations with a single simple turning point. Finally, in the appendix we revisit a delicate existence problem for the independent variable change already discussed by Lynn and Keller (1970), Rubenfeld and Willner (1977) and Willner and Mahar (1977).

2. Asymptotically equivalent systems

Henceforth, we will denote the small parameter by ε rather than \hbar and allow the functions p and f in the equations (1) and (2) to be dependent on ε. The analysis will be more transparent if equations (1) and (2) are written as systems:

$$
\begin{align*}
\varepsilon \frac{\mathrm{d}}{\mathrm{~d} x}\binom{\Psi}{\Phi} & =\left(\begin{array}{cc}
0 & 1 \\
-p(x, \varepsilon) & 0
\end{array}\right)\binom{\Psi}{\Phi} \tag{4}\\
\varepsilon \frac{\mathrm{d}}{\mathrm{~d} z}\binom{Q}{R} & =\left(\begin{array}{cc}
0 & 1 \\
-f(z, \varepsilon) & 0
\end{array}\right)\binom{Q}{R} \tag{5}
\end{align*}
$$

where $\Phi=\varepsilon \mathrm{d} / \mathrm{d} x \Psi$ and $R=\varepsilon \mathrm{d} / \mathrm{d} z Q$. Note that the systems (4) and (5) are Hamiltonian, to emphasize this we may rewrite them in the form

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \Psi=\frac{\partial}{\partial \Phi} H \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \Phi=-\frac{\partial}{\partial \Psi} H \quad H=\frac{1}{2 \varepsilon}\left(\Phi^{2}+p \Psi^{2}\right)
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} z} Q=\frac{\partial}{\partial R} K \quad \frac{\mathrm{~d}}{\mathrm{~d} z} R=-\frac{\partial}{\partial Q} K \quad K=\frac{1}{2 \varepsilon}\left(R^{2}+f Q^{2}\right)
$$

respectively.
Nevertheless, instead of the systems (4) and (5) we will consider more general, not necessarily Hamiltonian, systems

$$
\begin{align*}
& \varepsilon \frac{\mathrm{d}}{\mathrm{~d} x}\binom{\Psi}{\Phi}=A(x, \varepsilon)\binom{\Psi}{\Phi} \tag{6}\\
& \varepsilon \frac{\mathrm{d}}{\mathrm{~d} z}\binom{Q}{R}=B(z, \varepsilon)\binom{Q}{R} \tag{7}
\end{align*}
$$

where A and B have the asymptotic expansions

$$
\begin{aligned}
& A(x, \varepsilon) \sim \sum_{k=0}^{\infty} A_{k}(x) \varepsilon^{k} \\
& B(z, \varepsilon) \sim \sum_{k=0}^{\infty} B_{k}(z) \varepsilon^{k}
\end{aligned}
$$

$A_{k}(x)$ and $B_{k}(z)$ being holomorphic matrix-valued functions defined in some connected domains D and G of the complex plane respectively. The elements of A and B will be denoted as

$$
A=\left(\begin{array}{cc}
\mu & r \tag{8}\\
-p & \nu
\end{array}\right) \quad B=\left(\begin{array}{cc}
\sigma & g \\
-f & \tau
\end{array}\right)
$$

with the asymptotic expansions

$$
\begin{aligned}
& \mu(x, \varepsilon) \sim \sum_{k=0}^{\infty} \mu_{k}(x) \varepsilon^{k} \\
& p(x, \varepsilon) \sim \sum_{k=0}^{\infty} p_{k}(x) \varepsilon^{k}
\end{aligned}
$$

In these notations the equations (4) and (5), which are of most importance for physical applications, correspond to

$$
\mu_{k}(x)=\nu_{k}(x) \equiv 0 \quad \sigma_{k}(z)=\tau_{k}(z) \equiv 0
$$

for all $k \geqslant 0$,

$$
r_{0}(x) \equiv 1 \quad g_{0}(z) \equiv 1
$$

and

$$
r_{k}(x) \equiv 0 \quad g_{k}(z) \equiv 0
$$

for all $k \geqslant 1$.
Definition 1. The systems (6) and (7) are asymptotically equivalent if there exist a bijective (i.e. one-to-one) holomorphic function $\varphi: G \rightarrow D$ and a matrix-valued function $S(z, \varepsilon), z \in G$, with the asymptotic expansion

$$
S(z, \varepsilon) \sim \sum_{k=0}^{\infty} S_{k}(z) \varepsilon^{k} \quad \operatorname{det} S_{0}(z) \neq 0
$$

$S_{k}(z)$ being holomorphic in G, such that the change of variables

$$
\begin{equation*}
\binom{\Psi(\varphi(z))}{\Phi(\varphi(z))}=S(z, \varepsilon)\binom{Q(z)}{R(z)} \tag{9}
\end{equation*}
$$

transforms the system (7) into the system (6).
This definition is compatible with that given in Wasow (1985).
We call φ and S the transformation function and the transformation matrix respectively and will speak of equivalent systems rather than asymptotically equivalent ones for brevity. Note that the bijective property of φ implies $\mathrm{d} / \mathrm{d} z \varphi \neq 0$ everywhere in G (e.g. see, Markushevich 1977).

Our purpose is to find the restrictions which the equivalence imposes on the matrices $A(x, \varepsilon)$ and $B(z, \varepsilon)$, and to describe the class of all transformation matrices $S(z, \varepsilon)$ provided that the transformation function $\varphi(z)$ is given.

Henceforth, a prime will denote differentiating with respect to z. Substituting equation (9) into equations (6) and (7) we obtain the transformation equation

$$
\varphi^{\prime}(z) A(\varphi(z), \varepsilon) S(z, \varepsilon)-S(z, \varepsilon) B(z, \varepsilon)=\varepsilon S^{\prime}(z, \varepsilon)
$$

or, in short notation,

$$
\begin{equation*}
\eta A S-S B=\varepsilon S^{\prime} \tag{10}
\end{equation*}
$$

where we have set

$$
\eta(z)=\varphi^{\prime}(z)
$$

for the sake of brevity.
Using the well known matrix-theoretical relation

$$
(\operatorname{det} S)^{\prime}=(\operatorname{det} S) \operatorname{tr}\left(S^{-1} S^{\prime}\right)
$$

valid for any function $S(z)$ such that $\operatorname{det} S(z) \neq 0$ (e.g. see, Arnold (1978a), where this relation is proven in a particular case of Wronskians of systems of linear differential equations) and recalling that $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr} A$, we obtain from equation (10) that

$$
\begin{equation*}
(\operatorname{det} S)^{\prime}=\operatorname{det} S \frac{\eta \operatorname{tr} A-\operatorname{tr} B}{\varepsilon} \tag{11}
\end{equation*}
$$

3. Normalization of zeroth-order terms

Consider a system

$$
\begin{equation*}
\varepsilon \frac{\mathrm{d}}{\mathrm{~d} \xi}\binom{\boldsymbol{U}_{1}}{U_{2}}=L(\xi, \varepsilon)\binom{U_{1}}{U_{2}} \tag{12}
\end{equation*}
$$

where ξ is a complex variable and the matrix L has the asymptotic expansion

$$
L(\xi, \varepsilon) \sim \sum_{k=0}^{\infty} L_{k}(\xi) \varepsilon^{k}
$$

with holomorphic coefficients $L_{k}(\xi)$.
Definition 2. A value ξ_{*} of the independent variable ξ is a turning point of the system (12) if the two eigenvalues of the matrix $L_{0}\left(\xi_{*}\right)$ are equal, i.e. $4 \operatorname{det} L_{0}\left(\xi_{*}\right)=\left(\operatorname{tr} L_{0}\left(\xi_{*}\right)\right)^{2}$. The order of a turning point ξ_{*} is the order of the number ξ_{*} as a zero of the function 4 det $L_{0}(\xi)-\left(\operatorname{tr} L_{0}(\xi)\right)^{2}$. A turning point ξ_{*} is non-degenerate if the Jordan structure of $L_{0}\left(\xi_{*}\right)$ is a single block of order two, and degenerate if $L_{0}\left(\xi_{*}\right)$ is diagonal.

Example. If $L_{0}(\xi)$ is of the form

$$
L_{0}(\xi)=\left(\begin{array}{cc}
0 & 1 \tag{13}\\
-q_{0}(\xi) & 0
\end{array}\right)
$$

then the turning points of the system (12) are the zeros of the function $q_{0}(\xi)$. All these turning points are non-degenerate.

Lemma. If systems (6) and (7) are equivalent then they have the same number of turning points of the same orders and the same degeneracy types. Moreover, every transformation function $\varphi(z)$ maps the turning points of the system (7) to the corresponding turning points of the system (6). The relations

$$
\begin{align*}
& \eta^{2} \operatorname{det} A_{0}=\operatorname{det} B_{0} \quad \eta \operatorname{tr} A_{0}=\operatorname{tr} B_{0} \\
& \operatorname{det} A_{0}\left(\operatorname{tr} B_{0}\right)^{2}=\operatorname{det} B_{0}\left(\operatorname{tr} A_{0}\right)^{2} \tag{14}
\end{align*}
$$

hold, where $\eta=\varphi^{\prime}=\mathrm{d} / \mathrm{d} z \varphi$. Finally, the systems with matrices

$$
A(x, \varepsilon)-\frac{1}{2} I \operatorname{tr} A_{0}(x) \quad \text { and } \quad B(z, \varepsilon)-\frac{1}{2} I \operatorname{tr} B_{0}(z)
$$

are also equivalent with the same $\varphi(z)$ and $S(z, \varepsilon)$ (I being 2×2 unity matrix).
Proof. Equating zeroth-order terms in the transformation equation (10) we obtain

$$
\eta A_{0} S_{0}=S_{0} B_{0} \quad \operatorname{det} S_{0} \neq 0
$$

which immediately implies all the statements of the lemma (the last statement is obvious in view of the fact that

$$
\eta\left(A-\frac{1}{2} I \operatorname{tr} A_{0}\right) S-S\left(B-\frac{1}{2} I \operatorname{tr} B_{0}\right)=\eta A S-S B
$$

provided $\eta \operatorname{tr} A_{0}=\operatorname{tr} B_{0}$).
Since $\eta \operatorname{tr} A_{0}=\operatorname{tr} B_{0}$ for equivalent systems, the right-hand side of equation (11) contains no singularity.

Below we will consider only the systems (12) such that $\operatorname{tr} L_{0}(\xi) \equiv 0$. The lemma above provides us with a justification of this confinement, because $\operatorname{tr}\left(L_{0}-\frac{1}{2} I \operatorname{tr} L_{0}\right) \equiv 0$. Another justification stems from the fact that the solutions of the system $\mathrm{d} / \mathrm{d} \xi U=\Lambda U$ and $\mathrm{d} / \mathrm{d} \xi \tilde{U}=(\Lambda+\lambda I) \hat{U}$ with a scalar function $\lambda(\xi)$ are linked by a simple relation

$$
\tilde{U}=U \exp \left(\int_{\xi_{0}}^{\xi} \lambda(\xi) \mathrm{d} \xi\right)
$$

Finally, we are mostly interested in the systems (12) with matrices $L_{0}(\xi)$ of the form (13) for which $\operatorname{tr} L_{0}(\xi) \equiv 0$.

Lynn and Keller (1970, section 9) declared that for any system (12) with $\operatorname{tr} L_{0}(\xi) \equiv 0$ there exists a holomorphic matrix-valued function $V(\xi)$ such that $\operatorname{det} V(\xi) \neq 0$ and

$$
V^{-1} L_{0} V=\left(\begin{array}{cc}
0 & 1 \\
-q_{0}(\xi) & 0
\end{array}\right)
$$

provided that all the turning points of the system (12) are non-degenerate. Then the system

$$
\varepsilon \frac{\mathrm{d}}{\mathrm{~d} \xi}\binom{U_{1}}{U_{2}}=V^{-1}\left(L V-\varepsilon \frac{\mathrm{d} V}{\mathrm{~d} \xi}\right)\binom{U_{1}}{U_{2}}
$$

is clearly equivalent to the original one and

$$
V^{-1}\left(L V-\varepsilon \frac{\mathrm{d} V}{\mathrm{~d} \xi}\right)=\left(\begin{array}{cc}
0 & 1 \\
-q_{0}(\xi) & 0
\end{array}\right)+\mathrm{O}(\varepsilon) .
$$

In view of this and being oriented to the physical applications, we will consider below only the systems (12) with the matrix $L_{0}(\xi)$ of the form (13).

Degenerate turning points of second-order systems of linear differential equations were extensively studied in Hanson and Russell (1967) and Hanson (1968).

Lynn and Keller (1970, section 9) treated only the case of systems (6) and (7) for which the matrix A has a normalized zeroth-order term

$$
A_{0}(x)=\left(\begin{array}{cc}
0 & 1 \\
-p_{0}(x) & 0
\end{array}\right)
$$

whereas the matrix B is entirely off diagonal with the right upper element equal to unity, i.e. it is of the form (5):

$$
B(z, \varepsilon)=\left(\begin{array}{cc}
0 & 1 \\
-f(z, \varepsilon) & 0
\end{array}\right)
$$

$f(z, \varepsilon)$ being a polynomial in z.

4. Recursive procedure

Consider two systems (6) and (7) with normalized zeroth-order terms in the asymptotic expansions of the matrices $A(x, \varepsilon)$ and $B(z, \varepsilon)$:

$$
A_{0}(x)=\left(\begin{array}{cc}
0 & 1 \\
-p_{0}(x) & 0
\end{array}\right) \quad B_{0}(z)=\left(\begin{array}{cc}
0 & 1 \\
-f_{0}(z) & 0
\end{array}\right) .
$$

According to the notation (8) this means $\mu_{0}(x)=\nu_{0}(x) \equiv 0, \sigma_{0}(z)=\tau_{0}(z) \equiv 0, r_{0}(x) \equiv 1$, $g_{0}(z) \equiv 1$. We will suppose that in the domain D the function p_{0} has $n+1 \geqslant 1$ zeros $x_{0}, x_{1}, \ldots, x_{n}$ of orders $m_{0}, m_{1}, \ldots, m_{n}$ which are the turning points of the system (6), and in the domain G the function f_{0} has $n+1$ zeros $z_{0}, z_{1}, \ldots, z_{n}$ of the same orders $\vec{m}_{0}, \vec{m}_{1}, \ldots, \vec{m}_{n}$ which are the turning points of the system (7). The relations (14) in this case reduce to

$$
\begin{equation*}
\eta^{2} p_{0}=f_{0} \tag{15}
\end{equation*}
$$

or, in full notation,

$$
\left(\varphi^{\prime}(z)\right)^{2} p_{0}(\varphi(z))=f_{0}(z)
$$

The existence of a one-to-one holomorphic function $\varphi: G \rightarrow D$ mapping each z_{j} into $x_{j}, 0 \leqslant j \leqslant n$, and satisfying (15) is a rather complicated problem, and we postpone its discussion to the appendix. Here we only point out that equation (15) implies

$$
\begin{equation*}
\int_{x_{i}}^{x_{1}} \sqrt{p_{0}(x)} \mathrm{d} x=\int_{z_{i}}^{z_{i}} \sqrt{f_{0}(z)} \mathrm{d} z \tag{16}
\end{equation*}
$$

for any corresponding couples x_{i}, x_{j} and z_{i}, z_{j} of turning points. In the case where the systems (6) and (7) represent one-dimensional Schrödinger equations, the equalities (16) can be recognized as equivalences of the phase integrals of importance in the physical applications.

Now, assuming the function $\varphi(z)$ to be chosen, we start looking for the solutions $S\left(z_{s} \varepsilon\right)$ of equation (10). Before formulating the main theorem we make two following remarks.

Remark 1. Provided det $S\left(z_{0}, \varepsilon\right)$ is known, det $S(z, \varepsilon)$ for any z in G can be calculated very easily using equation (11).

Remark 2. If $S(z, \varepsilon)$ is a solution of equation (10), so is $W(\varepsilon) S(z, \varepsilon)$ for any power series $W(\varepsilon)$ with a non-zero constant term. The following theorem ensures that all the solutions of equation (10) can be obtained from a particular one in this way.

Henceforth, we will fix a particular determination of the square root $\sqrt{\eta}$.
Theorem. Under the hypotheses on $A_{0}(x), B_{0}(z)$ and $\varphi(z)$ stated above, the transformation equation (10) has a formal solution $S(z, \varepsilon)$ if and only if for each $k \geqslant 1$ the off-diagonal elements $p_{k}, r_{k}, f_{k}, g_{k}$ of the matrices $A_{k}(x)$ and $B_{k}(z)$ (see equation (8)) satisfy the conditions

$$
\begin{equation*}
Z_{k}^{1}:\left.\frac{\mathrm{d}^{s}}{\mathrm{~d} z^{s}}\left(\eta^{2} p_{k}-f_{k}+f_{0} r_{k}-f_{0} g_{k}+T_{k}\right)\right|_{z_{i}}=0 \tag{17}
\end{equation*}
$$

for all $0 \leqslant j \leqslant n$ and $0 \leqslant s \leqslant m_{j}-2$ and

$$
\begin{equation*}
Z_{k}^{2}: \int_{z_{0}}^{z_{j}}\left(\eta^{2} p_{k}-f_{k}+f_{0} r_{k}-f_{0} g_{k}+T_{k}\right) \frac{\mathrm{d} z}{\sqrt{f_{0}}}=0 \tag{18}
\end{equation*}
$$

for all $1 \leqslant j \leqslant n$ (totally $m_{0}+m_{1}+\ldots+m_{n}-1$ conditions). Here $T_{1}=0$ and for $k \geqslant 2$ the T_{k} is some expression involving the elements of the matrices A_{0}, \ldots, A_{k-1}, B_{0}, \ldots, B_{k-1}. If these conditions are satisfied, then for every sequence $\omega_{0}, \omega_{1}, \omega_{2}, \ldots$ of complex numbers with $\omega_{0} \neq 0$ equation (10) has exactly two solutions $S^{(1)}(z, \varepsilon)$ and $S^{(2)}(z, \varepsilon)=-S^{(1)}(z, \varepsilon)$ subject to

$$
\begin{equation*}
\operatorname{det} S\left(z_{0}, \varepsilon\right) \sim \sum_{k=0}^{\infty} \omega_{k} \varepsilon^{k} \tag{19}
\end{equation*}
$$

The terms of the asymptotic expansions of these solutions can be computed by a recursive procedure containing a single operation of integrating at each step.

Proof. First of all, introduce the following short notation. For any two sequences $\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ and ($v_{0}, v_{1}, v_{2}, \ldots$) of numbers or functions we will write

$$
\begin{aligned}
& (u v)_{k}=\sum_{i=0}^{k} u_{k-i} v_{i} \\
& {[u v]_{k}=\sum_{i=0}^{k-1} u_{k-i} v_{i}} \\
& \{u v\}_{k}=\sum_{i=0}^{k-2} u_{k-i} v_{i} \\
& \langle u v\rangle_{k}=\sum_{i=1}^{k-1} u_{k-i} v_{i}
\end{aligned}
$$

(in particular, $[u v]_{0}=\{u v\}_{0}=\{u v\}_{1}=\langle u v\rangle_{0}=\langle u v\rangle_{1}=0$).
The elements of S will be denoted as

$$
S=\left(\begin{array}{cc}
M & \Gamma \tag{20}\\
\Delta & N
\end{array}\right)
$$

with the asymptotic expansions

$$
\begin{aligned}
& M(z, \varepsilon) \sim \sum_{k=0}^{\infty} M_{k}(z) \varepsilon^{k} \\
& \Gamma(z, \varepsilon) \sim \sum_{k=0}^{\infty} \Gamma_{k}(z) \varepsilon^{k} .
\end{aligned}
$$

Finally, we will use the notation

$$
\begin{array}{lrl}
a=\eta \mu-\sigma & b & =\eta \nu-\tau \\
c=\eta \mu-\tau & d & =\eta \nu-\sigma
\end{array}
$$

(see equation (8)) and

$$
w=a+b=c+d=\eta \operatorname{tr} A-\operatorname{tr} B .
$$

In this notation the transformation equation (10) can be rewritten as a sequence of systems ($X_{k}^{1}-X_{k}^{4}$):

$$
\begin{align*}
& X_{k}^{1}:[a M]_{k}+(f \Gamma)_{k}+\eta(r \Delta)_{k}=M_{k-1}^{\prime} \\
& X_{k}^{2}:[b N]_{k}-\eta(p \Gamma)_{k}-(g \Delta)_{k}=N_{k-1}^{\prime} \\
& X_{k}^{3}:[c \Gamma]_{k}-(g M)_{k}+\eta(r N)_{k}=\Gamma_{k-1}^{\prime} \tag{21}\\
& X_{k}^{4}:[d \Delta]_{k}-\eta(p M)_{k}+(f N)_{k}=\Delta_{k-1}^{\prime}
\end{align*}
$$

$k \geqslant 0$ (here $M_{-1}=N_{-1}=\Gamma_{-1}=\Delta_{-1}=0$) while equation (11) and (19) give
$\operatorname{det} S(z, \varepsilon) \sim\left(\sum_{k=0}^{\infty} \varepsilon^{k} \omega_{k}\right) \exp \left(\sum_{k=0}^{\infty} \varepsilon^{k} \int_{z_{0}}^{z} w_{k+1}(z) \mathrm{d} z\right) \sim \sum_{k=0}^{\infty} \Omega_{k}(z) \varepsilon^{k}$
where the coefficients Ω_{k} can be easily expressed in terms of $\omega_{0}, \ldots, \omega_{h}, w_{1}, \ldots, w_{k+1}$. For instance,

$$
\begin{equation*}
\Omega_{0}(z)=\omega_{0} \exp \left(\int_{z_{0}}^{z} w_{1}(z) \mathrm{d} z\right)=\omega_{0} E^{2} \tag{23}
\end{equation*}
$$

where we denote

$$
\begin{equation*}
E(z)=\exp \left(\frac{1}{2} \int_{z_{1},}^{z} w_{1}(z) \mathrm{d} z\right) . \tag{24}
\end{equation*}
$$

In view of equation (15) the sequence of systems (21) is equivalent to the sequence of systems ($Y_{k}^{1}-Y_{k}^{4}$):
$Y_{k}^{1}:[a M]_{k+1}+\eta[b N]_{k+1}+\left[f-\eta^{2} p, \Gamma\right]_{k+1}+\eta[r-g, \Delta]_{k+1}=M_{k}^{\prime}+\eta N_{k}^{\prime}$
$Y_{k}^{2}:[c \Gamma]_{k}-(g M)_{k}+\eta(r N)_{k}=\Gamma_{k-1}^{\prime}$
$Y_{k}^{3}: \eta[d \Delta]_{k+1}-f_{0}[c \Gamma]_{k+1}+\left[f_{0} g-\eta^{2} p, M\right]_{k+1}+\eta\left[f-f_{0} r, N\right]_{k+1}=\eta \Delta_{h}^{\prime}-f_{0} \Gamma_{k}^{\prime}$
$Y_{k}^{4}:[b N]_{k}-\eta(p \Gamma)_{k}-(g \Delta)_{k}=N_{k-1}^{\prime}$
$k \geqslant 0$. Indeed,

$$
Y_{k}^{2}=X_{k}^{3} \quad Y_{k}^{4}=X_{k}^{2}
$$

and using equation (15) it can be easily seen that

$$
Y_{k}^{1}=X_{k+1}^{1}+\eta X_{k+1}^{2} \quad Y_{k}^{3}=\eta X_{k+1}^{4}-f_{0} X_{k+1}^{3}
$$

(here the equality $Y_{k}^{1}=X_{k+1}^{1}+\eta X_{k+1}^{2}$ is to be understood in the way that Y_{k}^{1} is obtained multiplying X_{k+i}^{2} by η and adding it to X_{k+i}^{1}, and similarly for all the other equalities). Inversely,

$$
X_{k}^{1}=Y_{k-1}^{1}-\eta Y_{k}^{4} \quad X_{k}^{4}=\eta^{-1}\left(Y_{k-1}^{3}+f_{0} Y_{k}^{2}\right)
$$

(where Y_{-1}^{1} and Y_{-1}^{3} are to be ignored).
From Y_{k}^{2} and Y_{k}^{4} we can respectively express M_{k} and Δ_{k} :

$$
\begin{equation*}
M_{k}=\eta N_{k}+\zeta_{k} \quad \Delta_{k}=-\frac{f_{0}}{\eta} \Gamma_{k}+\rho_{k} \tag{26}
\end{equation*}
$$

where

$$
\begin{align*}
\zeta_{k} & =[c \Gamma]_{k}-[g M]_{k}+\eta[r N]_{k}-\Gamma_{k-1}^{\prime} \\
\rho_{k} & =[b N]_{k}-[g \Delta]_{k}-\eta[p \Gamma]_{k}-N_{k-1}^{\prime} . \tag{27}
\end{align*}
$$

Note that ζ_{k} and ρ_{k} involve only the elements of A_{l} and B_{l} with $l \leqslant k$ and S_{l} with $l<k$. In particular, $\zeta_{0}=\rho_{0}=0$ and equation (26) for $k=0$ reduces to

$$
\begin{equation*}
M_{0}=\eta N_{0} \quad \Delta_{0}=-\frac{f_{0}}{\eta} \Gamma_{0} . \tag{28}
\end{equation*}
$$

Substituting equation (26) into those for Y_{k}^{1} and Y_{k}^{3} we arrive, after some simple algebra, at the system for N_{k} and Γ_{k} :

$$
\begin{align*}
& 2 \eta N_{k}^{\prime}=-\eta^{\prime} N_{k}+\eta w_{1} N_{k}-t_{1} \Gamma_{k}+C_{k} \\
& 2 \frac{f_{0}}{\eta} \Gamma_{k}^{\prime}=-\left(\frac{f_{0}}{\eta}\right)^{\prime} \Gamma_{k}+\frac{f_{0}}{\eta} w_{1} \Gamma_{k}+t_{1} N_{k}+D_{k} \tag{29}
\end{align*}
$$

where

$$
\begin{align*}
C_{k} & =\{a M\}_{k+1}+\eta\{b N\}_{k+1}+\left\{f-\eta^{2} p, \Gamma\right\}_{k+1}+\eta\{r-g, \Delta\}_{k+1}+a_{1} \zeta_{k}+\eta\left(r_{1}-g_{1}\right) \rho_{k}-\zeta_{k}^{\prime} \\
D_{k}= & \{d \Delta\}_{k+1}+\eta p_{0}\{c \Gamma\}_{k+1}+\left\{f_{0} r-f, N\right\}_{k+1}+\eta\left\{p-p_{0} g, M\right\}_{k+1}-d_{1} \rho_{k} \tag{30}\\
& +\eta\left(p_{1}-p_{0} g_{1}\right) \zeta_{k}+\rho_{h}^{\prime}
\end{align*}
$$

(C_{k} and D_{k} involve only the elements of A_{l}, B_{l} with $l \leqslant k+1$ and S_{l} with $l<k$) and we denote

$$
\begin{equation*}
t_{k}=\eta^{2} p_{k}-f_{k}+f_{0} r_{k}-f_{v} g_{k} \tag{31}
\end{equation*}
$$

In particular, $C_{0}=D_{0}=t_{0}=0$.
The determinant equation (22) can be rewritten as a sequence of equations:

$$
\begin{equation*}
(M N)_{k}-(\Gamma \Delta)_{k}=\Omega_{k} \tag{32}
\end{equation*}
$$

After substituting equations (23) and (28) into equation (32) for $k=0$, the latter equation takes the form

$$
\begin{equation*}
\eta N_{0}^{2}+\frac{f_{0}}{\eta} \Gamma_{0}^{2}=\omega_{0} E^{2} \tag{33}
\end{equation*}
$$

whereas after substituting equations (26) for $k \geqslant 1$ and (28) into equation (32) for the same k the latter equation takes the form

$$
\begin{equation*}
2 \eta N_{0} N_{k}+\frac{2 f_{0}}{\eta} \Gamma_{0} \Gamma_{k}=\Omega_{k}+\Xi_{k} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
\Xi_{k}=\Gamma_{0} \rho_{k}-N_{0} \zeta_{k}+\langle\Gamma \Delta\rangle_{k}-\langle M N\rangle_{k} \tag{35}
\end{equation*}
$$

Ξ_{k} involves only the elements of A_{l}, B_{l} with $l \leqslant k$ and S_{l} with $l<k$.
Now we can start successively solving the sequence of systems (29).

4.1. The first step: $k=0$

The system (29) for $k=0$ is a system of two first-order homogeneous linear differential equations. Every its solution (N_{0}, Γ_{0}) satisfies equation (33), which enables us to solve this system explicitly. Its general solution subject to equation (33) is

$$
\begin{align*}
& N_{0}(z)=\frac{E}{\sqrt{\eta}}\left(\alpha_{0} \cos \theta+\beta_{0} \sin \theta\right) \\
& \Gamma_{0}(z)=E \sqrt{\frac{\eta}{f_{0}}}\left(\alpha_{0} \sin \theta-\beta_{0} \cos \theta\right) \tag{36}
\end{align*}
$$

where α_{0} and β_{0} are constants such that $\alpha_{0}^{2}+\beta_{0}^{2}=\omega_{0}$ and

$$
\begin{equation*}
\theta(z)=\frac{1}{2} \int_{z_{0}}^{z} \frac{t_{1}}{\sqrt{f_{0}}} \mathrm{~d} z \tag{37}
\end{equation*}
$$

t_{1} being given by equation (31).
As $f_{0}\left(z_{0}\right)=0$ and $\theta\left(z_{0}\right)=0$ whenever $\theta(z)$ is well defined near z_{0}, a necessary condition for $\Gamma_{0}(z)$ to be regular at z_{0} is $\beta_{0}=0$. So,

$$
\alpha_{0}^{2}=\omega_{0}
$$

and

$$
\begin{align*}
& N_{0}(z)=\frac{\alpha_{0} E}{\sqrt{\eta}} \cos \theta \\
& \Gamma_{0}(z)=\alpha_{0} E \sqrt{\frac{\eta}{f_{0}}} \sin \theta \tag{38}
\end{align*}
$$

Moreover, since $f_{0}(z)$ vanishes at the turning points z_{j} to the orders $m_{j}, 0 \leqslant j \leqslant n$, for $\Gamma_{0}(z)$ to be regular at each z_{j} one has to require that $\theta(z)=\mathrm{O}\left(\left(z-z_{j}\right)^{m_{i} / 2}\right)$ as $z \rightarrow z_{j}$. This is the case if $t_{1}(z)=\mathrm{O}\left[\left(z-z_{j}\right)^{m_{i}-1}\right]$ for each $0 \leqslant j \leqslant n$ and $\theta\left(z_{j}\right)=0$ for each $1 \leqslant j \leqslant n$. Thus, we arrive at the regularity conditions

$$
\begin{align*}
& \left.\frac{\mathrm{d}^{s} t_{1}}{\mathrm{~d} z^{s}}\right|_{z_{i}} \quad 0 \leqslant j \leqslant n \quad 0 \leqslant s \leqslant m_{j}-2 \tag{39}\\
& \int_{z_{0}}^{=} \frac{t_{1}}{\sqrt{f_{0}}} \mathrm{~d} z=0 \quad 1 \leqslant j \leqslant n \tag{40}
\end{align*}
$$

which coincide with the conditions Z_{1}^{1} and Z_{1}^{2} (see equations (17) and (18)).
If these conditions are satisfied, the functions $N_{0}(z)$ and $\Gamma_{0}(z)$ defined by equation (38) are indeed holomorphic in G. We should like to specifically emphasize the fact that an ambiguity arising from the determination of the square root $\sqrt{f_{0}(z)}$ disappears provided that t_{1} satisfies equations (39) and (40). This follows from the oddness of the sine and the evenness of the cosine.

4.2. The subsequent steps: $k \geqslant 1$

The general solution of the system (29) for $k \geqslant 1$ is

$$
\begin{align*}
& N_{k}(z)=\frac{E}{\sqrt{\eta}}\left(\alpha_{k} \cos \theta+\beta_{k} \sin \theta\right) \\
& \Gamma_{k}(z)=E \sqrt{\frac{\eta}{f_{0}}}\left(\alpha_{k} \sin \theta-\beta_{k} \cos \theta\right) \tag{41}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha_{k}(z)=\gamma_{k}+\frac{1}{2} \int_{z_{0}}^{z}\left(\frac{C_{k}}{\sqrt{\eta}} \cos \theta+\sqrt{\frac{\eta}{f_{0}}} D_{k} \sin \theta\right) \frac{\mathrm{d} z}{E} \tag{42}\\
& \beta_{k}(z)=\delta_{k}+\frac{1}{2} \int_{z_{0}}^{z}\left(\frac{C_{k}}{\sqrt{\eta}} \sin \theta-\sqrt{\frac{\eta}{f_{0}}} D_{k} \cos \theta\right) \frac{\mathrm{d} z}{E} \tag{43}
\end{align*}
$$

γ_{k} and δ_{k} being arbitrary constants, and θ being given by equation (37).
As $f_{0}\left(z_{0}\right)=0$ and $\theta\left(z_{0}\right)=0$, a necessary condition for $\Gamma_{k}(z)$ to be regular at z_{0} is $\beta_{k}\left(z_{0}\right)=0$, which is equivalent to

$$
\begin{equation*}
\delta_{k}=0 \tag{44}
\end{equation*}
$$

because $\beta_{k}\left(z_{0}\right)=\delta_{k}$ whenever $\beta_{k}(z)$ is well defined near z_{0}. Moreover, since $f_{0}(z)=$ $\mathrm{O}\left[\left(z-z_{j}\right)^{m_{j}}\right]$ as $z \rightarrow z_{j}$ for each turning point z_{j}, for $\Gamma_{k}(z)$ to be regular at z_{j} one has to require that $\beta_{k}(z)=\mathrm{O}\left[\left(z-z_{j}\right)^{m_{j} / 2}\right]$ as $z \rightarrow z_{j}, 0 \leqslant j \leqslant n$. Thus, we arrive at the regularity conditions
$\left.\frac{\mathrm{d}^{s}}{\mathrm{~d} z^{s}}\left(\sqrt{\frac{f_{0}}{\eta}} C_{k} \sin \theta-\sqrt{\eta} D_{k} \cos \theta\right) \frac{1}{E}\right|_{z_{i}}=0 \quad 0 \leqslant j \leqslant n \quad 0 \leqslant s \leqslant m_{j}-2$
$\int_{z_{0}}^{z_{1}}\left(\frac{C_{k}}{\sqrt{\eta}} \sin \theta-\sqrt{\frac{\eta}{f_{0}}} D_{k} \cos \theta\right) \frac{\mathrm{d} z}{E}=0 \quad 1 \leqslant j \leqslant n$.
If these conditions are satisfied, the functions $N_{k}(z)$ and $\Gamma_{k}(z)$ defined by equation (41) in which α_{k} and β_{k} are given by equations (42)-(44) are indeed holomorphic in G. In particular, an ambiguity arising from the determination of the square root $\sqrt{f_{0}(z)}$ disappears.

Suppose that the regularity conditions (45) and (46) are satisfied and one desires to calculate the functions $N_{k}(z)$ and $\Gamma_{k}(z)$ according to equations (41)-(44). Each of the equations (42) and (43) contains an integral. Nevertheless, one has to compute the integral in formula (43) for $\beta_{k}(z)$ only, because $\alpha_{k}(z)$ can be found very easily using equation (34) provided that Ω_{k} has been already calculated from equation (22). Indeed, substituting equations (38) and (41) into equation (34) we obtain

$$
\begin{equation*}
\alpha_{k}=\frac{\Omega_{k}+\Xi_{k}}{2 \alpha_{0} E^{2}} \tag{47}
\end{equation*}
$$

Here Ξ_{k} is given by equation (35) and Ω_{k} is defined by equation (22). From the latter equation it is not hard to derive that

$$
\begin{equation*}
\Omega_{k}=\omega_{k} E^{2}+\ldots \tag{48}
\end{equation*}
$$

where \ldots denotes terms involving only $\omega_{0}, \ldots, \omega_{k-1}$. Equations (42), (47) and (48) show how γ_{k} is uniquely determined by ω_{k}. Having calculated N_{k} and Γ_{k}, one can find M_{k} and Δ_{k} by equation (26).

Finally, we can rewrite the expressions (30) for C_{k} and D_{k} in the form

$$
\begin{align*}
& C_{k}=a_{k+1} M_{0}+\eta b_{k+1} N_{0}+\left(f_{k+1}-\eta^{2} p_{k+1}\right) \Gamma_{0}+\eta\left(r_{k+1}-g_{k+1}\right) \Delta_{0}+\kappa_{k} \\
& D_{k}=-d_{k+1} \Delta_{0}+\eta p_{0} c_{k+1} \Gamma_{0}+\left(f_{0} r_{k+1}-f_{k+1}\right) N_{0}+\eta\left(p_{k+1}-p_{0} g_{k+1}\right) M_{0}+\gamma_{k} \tag{49}
\end{align*}
$$

κ_{k} and χ_{k} involve only the elements of A_{l}, B_{l} with $l \leqslant k$ and S_{l} with $l<k$. Substituting equations (28) and (38) into equation (49) we obtain, after straightforward algebra, that

$$
\frac{1}{E}\left(\sqrt{\frac{f_{0}}{\eta}} C_{k} \sin \theta-\sqrt{\eta} D_{k} \cos \theta\right)=-\alpha_{0}\left(t_{k+1}+\Pi_{k+1}\right)
$$

where t_{k+1} is given by equation (31) and

$$
\begin{equation*}
\Pi_{k+1}=\frac{1}{\alpha_{0} E}\left(\sqrt{\eta} \chi_{k} \cos \theta-\sqrt{\frac{f_{0}}{\eta}} \kappa_{k} \sin \theta\right) \tag{50}
\end{equation*}
$$

So, regularity conditions (45) and (46) gain the form $Z_{k+1}^{1}-Z_{k+1}^{2}$ (see equations (17) and (18)) with Π_{k+1} in place of T_{k+1}.

The expression (50) for Π_{k+1} involves the constants $\alpha_{0}, \omega_{1}, \ldots, \omega_{k-1}$ determining the matrices $S_{0}, S_{1}, \ldots, S_{k-1}$. Nevertheless, if all the regularity conditions $Z_{1}^{1}-Z_{1}^{2}$ with $1 \leqslant l \leqslant k$ are satisfied, regularity conditions (45) and (46) do not depend on these constants. In other words, if a particular collection ($\alpha_{0}^{(1)}, \omega_{1}^{(1)}, \ldots, \omega_{k-1}^{(1)}$) of values of these constants satisfies conditions (45) and (46), so does any other collection $\left(\alpha_{0}^{(2)}, \omega_{1}^{(2)}, \ldots, \omega_{k-1}^{(2)}\right)$. Indeed, if matrices $S_{0}^{(1)}(z), S_{1}^{(1)}(z), \ldots, S_{k}^{(1)}(z)$ are the holomorphic solutions of the systems $\left(Y_{0}^{1}-Y_{0}^{4}\right),\left(Y_{1}^{1}-Y_{1}^{4}\right), \ldots,\left(Y_{k}^{1}-Y_{k}^{4}\right)$ (see equation (25)) for $\alpha_{0}=\alpha_{0}^{(1)}, \omega_{1}=\omega_{1}^{(1)}, \ldots, \omega_{k-1}=\omega_{k-1}^{(1)}, \omega_{k}=\omega_{k}^{*}$ with some ω_{k}^{*} then the matrices $S_{0}^{(2)}(z), S_{1}^{(2)}(z), \ldots, S_{k}^{(2)}(z)$ defined by

$$
\begin{align*}
& \left(\left(\alpha_{0}^{(1)}\right)^{2}+\sum_{i=1}^{k-1} \omega_{i}^{(1)} \varepsilon^{i}+\omega_{k}^{*} \varepsilon^{k}\right)^{1 / 2} \sum_{i=0}^{k} \varepsilon^{i} S_{i}^{(2)}(z) \\
& \quad=\left(\left(\alpha_{0}^{(2)}\right)^{2}+\sum_{i=1}^{k-1} \omega_{i}^{(2)} \varepsilon^{i}+\omega_{k}^{*} \varepsilon^{k}\right)^{1 / 2} \sum_{i=0}^{k} \varepsilon^{i} S_{i}^{(1)}(z)+\mathrm{O}\left(\varepsilon^{k+1}\right) \tag{51}
\end{align*}
$$

are the holomorphic solutions of the same systems for $\alpha_{0}=\alpha_{0}^{(2)}, \omega_{1}=\omega_{1}^{(2)}, \ldots, \omega_{k-1}=$ $\omega_{k-1}^{(2)}, \omega_{k}=\omega_{k}^{*}$ (the square roots in equation (51) are determined so that the square root on the left-hand side is equal to $\alpha_{0}^{(1)}+\mathrm{O}(\varepsilon)$, and the square root on the right-hand side, to $\alpha_{0}^{(2)}+O(\varepsilon)$). Hence, conditions (45) and (46) are satisfied for the collection $\left(\alpha_{0}^{(2)}, \omega_{1}^{(2)}, \ldots, \omega_{k-1}^{(2)}\right)$, too. Thus we can define T_{k+1} as Π_{k+1} calculated at $\alpha_{0}=1$, $\omega_{1}=\ldots=\omega_{k-1}=0$ and obtain the regularity conditions $Z_{k+1}^{1}-Z_{k+1}^{2}$. The proof of the theorem is completed.

5. Application to the case of a single simple turning point

For 2×2 matrices, the Lie algebra $\mathrm{sp}(2, \mathbb{C})$ of complex infinitesimally symplectic matrices (i.e. those determining Hamiltonian linear differential equations) is isomorphic to the Lie algebra $\operatorname{sl}(2, \mathbb{C})$ of matrices with trace zero, and correspondingly the Lie group $\operatorname{SP}(2, \mathbb{C})$ of complex symplectic matrices (i.e. those determining canonical linear transformations) is isomorphic to the Lie group SL($2, \mathbb{C}$) of matrices with determinant unity (e.g. see, Arnold (1978b, 1988) or Arnold and Givental (1990)). If the matrices A and B in equations (6) and (7) are of trace zero, which is the case, for example,
for systems corresponding to one-dimensional Schrödinger equations, then in accordance with equation (11) det S is independent of z and in equation (22) $\Omega_{k}(z) \equiv \omega_{k}$. According to the theorem of the previous section we can set $\omega_{0}=1, \omega_{k}=0$ for $k \geqslant 1$ and look for the transformation matrix $S(z, \varepsilon)$ within the class of symplectic matrices. If the transformation equation (10) is solvable it has exactly two symplectic solutions $S^{(1)}$ and $S^{(2)}=-S^{(1)}$.

Unfortunately, the particular case of systems (4) and (5) corresponds to no simplifications in our procedure. From the regularity conditions Z_{k}^{1} and Z_{k}^{2} (see equations (17) and (18)) for $k \geqslant 2$ together with equations (27), (30), (49) and (50) for $k \geqslant 1$ it is seen that even when $p(x, \varepsilon)=p_{0}(x)$ does not depend on ε, one has to take into account higher-order terms $f_{1}(z), f_{2}(z), \ldots$, of $f(z)$ to achieve the equivalence of the systems.

The only situation where some remarkable simplifications take place is the case of a single simple turning point. In this case there are no regularity conditions to be satisfied, and it becomes possible to set $p(x, \varepsilon)=p_{0}(x), f(z, \varepsilon)=f_{0}(z)$, which leads to the following result.

Proposition. If the matrices A and B in equations (6) and (7) have the form

$$
A(x, \varepsilon)=A(x)=\left(\begin{array}{cc}
0 & 1 \\
-p_{0}(x) & 0
\end{array}\right) \quad B(z, \varepsilon)=B(z)=\left(\begin{array}{cc}
0 & 1 \\
-f_{0}(z) & 0
\end{array}\right)
$$

and the domains of independent variables x and z contain single first-order turning points x_{0} and z_{0} respectively, then the terms $S_{k}(z)$ of the symplectic transformation matrix $S(z, \varepsilon)$ are diagonal for k even and off diagonal for k odd.

Proof. Uñder the hypotheses of the proposition,

$$
\zeta_{k}=-\Gamma_{k-1}^{\prime} \quad \rho_{k}=-N_{k-1}^{\prime}
$$

(see equation (27))

$$
\begin{equation*}
M_{k}=\eta N_{k}-\Gamma_{k-1}^{\prime} \quad \Delta_{k}=-\frac{f_{0}}{\eta} \Gamma_{k}-N_{k-1}^{\prime} \tag{52}
\end{equation*}
$$

(see equation (26))

$$
C_{k}=\Gamma_{k-1}^{\prime \prime}=\kappa_{k} \quad D_{k}=-N_{k-1}^{\prime \prime}=\chi_{k}
$$

(see equations (30) and (49)), and the equations (29) take the form

$$
\begin{aligned}
& 2 \eta N_{k}^{\prime}=-\eta^{\prime} N_{k}+\Gamma_{k-1}^{\prime \prime} \\
& 2 \frac{f_{0}}{\eta} \Gamma_{k}^{\prime}=-\left(\frac{f_{0}}{\eta}\right)^{\prime} \Gamma_{k}-N_{k-1}^{\prime \prime} .
\end{aligned}
$$

Moreover, in this case $E(z) \equiv 1$ (see equation (24)) and $\theta(z) \equiv 0$ (see equation (31) for $k=1$ and equation (37)). So, according to equations (35), (38), (41)-(44) and (47) we arrive at

$$
\begin{equation*}
N_{0}=\frac{\alpha_{0}}{\sqrt{\eta}} \quad \Gamma_{0}=0 \tag{53}
\end{equation*}
$$

and

$$
\begin{align*}
& N_{k}=\frac{1}{\sqrt{\eta}}\left(\gamma_{k}+\frac{1}{2} \int_{z_{0}}^{z} \frac{\Gamma_{k-1}^{\prime \prime}}{\sqrt{\eta}} \mathrm{d} z\right)=\frac{1}{\sqrt{\eta}} \frac{\omega_{k}+N_{0} \Gamma_{k-1}^{\prime}+\langle\Gamma \Delta\rangle_{k}-\langle M N\rangle_{k}}{2 \alpha_{0}} \\
& \Gamma_{k}=-\frac{1}{2} \sqrt{\frac{\eta}{f_{0}}} \int_{z_{0}}^{z} \sqrt{\frac{\eta}{f_{0}}} N_{k-1}^{\prime \prime} \mathrm{d} z \tag{54}
\end{align*}
$$

for $k \geqslant 1$. The symplectic property of the matrix S implies that $\omega_{k}=0$ for $k \geqslant 1$. Now from equations (52)-(54) it immediately follows by induction that $\Gamma_{k}=\Delta_{k}=0$ for k even and $N_{k}=M_{k}=0$ for k odd. The proposition is proven. Note that $S_{0}=$ $\alpha_{0} \operatorname{diag}(\sqrt{\eta}, 1 / \sqrt{\eta})$. Moreover, as N_{k} can be found without integration and $\Gamma_{k}=0$ for k even, we arrive at the conclusion that to calculate $S_{k}(z)$ for k even one has to perform no integrations at all. Thus, under the hypotheses of the proposition, the number of integrations to be fulfilled is two times less than in the general case.

Acknowledgments

We thank Dr M C Nucci for discussions on the equivalence problem. This work has been made possible by the Italian CNR (Consiglio Nazionale delle Ricerche) exchange programme with the USSR Academy of Sciences. It is supported by the CNR (Progetti Finalizzati Chimica Fine and Sistemi Informatici e Calcolo Parallelo).

Appendix. On the existence problem for the transformation function

Let G be a connected domain in the complex plane \mathbb{C} and let holomorphic functiond $p_{0}: \mathbb{C} \rightarrow \mathbb{C}$ and $f_{0}: G \rightarrow \mathbb{C}$ have zeros $x_{0}, x_{1}, \ldots, x_{n}$ and $z_{0}, z_{1}, \ldots, z_{n}$ respectively, of the same orders $m_{0}, m_{1}, \ldots, m_{n}$. Suppose that

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} \sqrt{p_{0}(x)} \mathrm{d} x=\int_{z_{0}}^{z_{1}} \sqrt{f_{0}(z)} \mathrm{d} z \tag{A1}
\end{equation*}
$$

$(1 \leqslant j \leqslant n)$, for a particular determination of the square roots along the integration paths. Lynn and Keller (1970, section 2 and appendix) declared that under these hypotheses there always exists a holomorphic function $\varphi: G \rightarrow \mathbb{C}$ such that:
(i) $\varphi\left(z_{j}\right)=x_{j}$ for $0 \leqslant j \leqslant n$;
(ii) $\int_{x_{0}}^{\varphi(z)} \sqrt{p_{0}(x)} \mathrm{d} x=\int_{z_{0}}^{z} \sqrt{f_{0}(z)} \mathrm{d} z$ for z in G (note that this equality implies equation (15));
(iii) $\varphi^{\prime}(z) \neq 0$ everywhere in G.
(In fact, Lynn and Keller considered only the case where $p_{0}(x)$ is a polynomial

$$
p_{0}(x)=c \prod_{j=0}^{n}\left(x-x_{j}\right)^{m_{1}} \quad c=\text { const }
$$

of degree $m_{0}+m_{1}+\ldots+m_{n}$.) In reality, this statement is not correct, as the following counterexample shows.

In this counterexample p_{0} and f_{0} are polynomials of degree six, each having three double roots. Namely,

$$
p_{0}(x)=x^{2}(x-a)^{2}(x-b)^{2}
$$

where a and b are arbitrary real positive constants such that $a<b<2 a$, and

$$
f_{0}(z)=(z+v)^{2} z^{2}(z-u)^{2}
$$

where real positive constants u and v are determined by the system

$$
u^{3}(u+2 v)=b^{3}(2 a-b) \quad v^{3}(v+2 u)=a^{3}(2 b-a)
$$

(it is not hard to prove that this system has a unique solution (u, v) with $u>0, v>0$).
Having determined $\sqrt{p_{0}(x)}$ and $\sqrt{f_{0}(z)}$ as

$$
\sqrt{p_{0}(x)}=x(x-a)(x-b)
$$

and

$$
\sqrt{f_{0}(z)}=-(z+v) z(z-u)
$$

we obtain

$$
J_{1}=\int_{0}^{b} \sqrt{p_{0}(x)} \mathrm{d} x=\int_{0}^{u} \sqrt{f_{0}(z)} \mathrm{d} z=\frac{b^{3}(2 a-b)}{12}
$$

and

$$
J_{2}=\int_{0}^{a} \sqrt{p_{0}(x)} \mathrm{d} x=\int_{0}^{-\mathrm{v}} \sqrt{f_{0}(z)} \mathrm{d} z=\frac{a^{3}(2 b-a)}{12} .
$$

Thus, all the hypotheses of the statement cited above are satisfied with $n=2$, $m_{0}=m_{1}=m_{2}=2, x_{0}=0, x_{1}=b, x_{2}=a, z_{0}=0, z_{1}=u$ and $z_{2}=-v$. As G one can take an arbitrarily small complex neighbourhood of the segment $-v \leqslant z \leqslant u$ of the real axis. On the other hand, there exists no holomorphic function $\varphi: G \rightarrow \mathbb{C}$ satisfying the conditions (i)-(iii) above. Indeed, let

$$
P(x)=\int_{x_{0}}^{x} \sqrt{p_{0}(x)} \mathrm{d} x=\frac{x^{4}}{4}-\frac{(a+b) x^{3}}{3}+\frac{a b x^{2}}{2}
$$

and

$$
F(z)=\int_{z_{0}}^{z} \sqrt{f_{0}(z)} \mathrm{d} z=-\frac{z^{4}}{4}+\frac{(u-v) z^{3}}{3}+\frac{u v z^{2}}{2} .
$$

Suppose that a continuous function $\varphi: G \rightarrow \mathbb{C}$ satisfies $\varphi(0)=0$ and $P(\varphi(z))=F(z)$. If a real z increases from 0 to u value $F(z)$ monotonously increases from 0 to J_{1}. The polynomial $P(x)-J_{1}$ has the double root b and two simple roots $x^{(1)}<0$ and $0<x^{(2)}<a$. In the interval $0<F \leqslant J_{1}$ the equation for φ

$$
P(\varphi)=F
$$

has exactly two solutions $\varphi^{(1)}(F)<\varphi^{(2)}(F)$ which depend on F continuously and tend to zero as $F \rightarrow 0$. For these solutions $\varphi^{(1)}\left(J_{1}\right)=x^{(1)}$ and $\varphi^{(2)}\left(J_{1}\right)=x^{(2)}$. So, either $\varphi(u)=$ $x^{(1)}$ or $\varphi(u)=x^{(2)}$ and the function $\varphi(z)$ cannot satisfy the condition $\varphi(u)=b$.

From this counterexample one can also easily understand at which point the argument of Lynn and Keller fails. Indeed, let the equalities (55) hold, $\varphi\left(z_{0}\right)=x_{0}$ and a function $\varphi(z)$ satisfy the requirements (ii) and (iii) above. Then the equalities (A1) will obviously remain valid if one replaces x_{j} by $\varphi\left(z_{j}\right), 1 \leqslant j \leqslant n$. But, despite the reasoning by Lynn and Keller, this does not imply that $\varphi\left(z_{j}\right)=x_{j}$.

An analogous counterexample is provided by polynomials

$$
p_{0}(x)=x^{2}(x-a)^{2}(b-x)
$$

and

$$
f_{0}(z)=(z+v)^{2} z^{2}(u-z)
$$

of degree five, where a and b are arbitrary real positive constants subject to $a<b<7 a / 4$, while real positive constants u and $v>4 u / 3$ are determined by the system

$$
u^{5}(4 u+7 v)^{2}=b^{5}(7 a-4 b)^{2} \quad(u+v)^{5}(3 v-4 u)^{2}=(b-a)^{5}(3 a+4 b)^{2}
$$

(it is not hard to prove that this system has a unique solution (u, v) with $u>0$ and $v>4 u / 3$).

These counterexamples show that the existence problem for the change $x=\varphi(z)$ of the independent variable is rather delicate. The search for sufficient conditions (presumably in terms of the configuration of the Stokes lines; see Heading 1962, Evgrafov and Fedoryuk 1966, Wasow 1970, 1985, Sibuya 1975) for the existence of φ is beyond the present study.

Note, however, that the failure of the phase integral equivalence (16) to ensure the existence of a transformation function is an essentially complex effect. In the case of infinitely differentiable functions in intervals of the real line the equalities

$$
\int_{x_{i}}^{x_{i+1}} \sqrt{\left|p_{0}(x)\right|} \mathrm{d} x=\int_{z_{i}}^{z_{i+1}} \sqrt{\left|f_{0}(z)\right|} \mathrm{d} z
$$

$(0 \leqslant j \leqslant n-1)$ under the hypothesis

$$
x_{0}<x_{1}<\ldots x_{n} \quad \text { and } \quad z_{0}<z_{1}<\ldots z_{n}
$$

(which makes no sense in the complex case) guarantee the existence of the desired function φ. (For details and the proof see Rubenfeld and Willner (1977).) The possibility to achieve the phase integral equivalences in the real case with the function $p_{0}(x)$ being a polynomial is shown by Willner and Mahar (1977).

Note added. After this paper had been submitted important results by Anyanwu (1988a, b, c) came to our attention. Anyanwu (1988a) has constructed the formal uniform asymptotic theory for differential equations involving simultaneously arbitrary finite numbers of turning points and singular points of any orders. His approach is based on the comparison equation method in Langer's spirit and is entirely parallel to the theory by Lynn and Keller (1970) (in contrast to the technique of Wazwaz and Hanson (1986a, b) which has also been developed for the case of simultaneous presence of zeroes and poles). Similarly to Lynn and Keller (1970), Anyanwu (1988a) considers second-order equations and systems of two first-order equations as well. Moreover, in Anyanwu's paper, there is a crucial lemma concerning the existence of the independent variable change analogous to that by Lynn and Keller. As in Lynn and Keller (1970), the proof of this lemma in Anyanwu (1988a) is given in the appendix and contains the same inaccuracy (see the appendix of present paper).

Anyanwu (1988b) specializes the general expansion of Anyanwu (1988a) for the cases (-2), (-1), (1, -2), $(1,-1),(1,1,-2),(2,-2)$, and $(-1,-1)$ where numbers $1,2,-1$, and -2 denote a simple turning point, a double turning point, a simple singular point and a double singular point, respectively. Note that the cases (-1) and (-2) were treated in Anyanwu (1982).

In Anyanwu (1988c), expansions found in Anyanwu (1988a, b) are used to solve boundary and eigenvalue problems for second-order differential equations with singular and turning points.

We believe that the equivalence approach with transformation determinant arguments proposed in the present paper can be carried over mutatis mutandis to equations with turning and singular points, also.

The theory devised in Anyanwu (1988a, b, c) is applied to obtain uniform approximations for the natural modes and frequencies of some acoustical resonators in Anyanwu and Nwoke (1988).

Among numerous physical applications of uniform asymptotic expansions by Lynn and Keller (1970), we mention here the eigenvalue problems for inhomogeneous dielectric (Arnold 1980a, b) and clad planar (Arnold 1980c, d) waveguides, solving the one-dimensional Schrödinger equation for scattering of a particle by a potential barrier and for bound states of a potential well (Keller 1986), and calculating the change in
the action adiabatic invariant for a harmonic oscillator with a slowly varying frequency (Keller and Mu 1991). Ail these problems can be reduced to equations with two simpie turning points.

For a very recent survey on the asymptotic theory for one-dimensional Schrödinger equations, see Slavyanov (1991).

References

Anyanwu D U 1982 Mãh. Proc. Camb. Phil. Soc. 91111

- 1988a J. Math. Anal. Appl. 134329

1988b J. Math. Anal. Appl. 134355
1988c J. Math. Anal. Appl. 134379
Anyanwu D U and Keller J B 1975 Commun. Pure Appl. Math. 28753

- 1978 Commun. Pure Appl. Math. 31107

Anyanwu D U and Nwoke C 1988 J. Math. Anal. Appl. 134396
Arnold J M 1980a J. Phys. A: Math, Gen, 13347
-_ 1980b J. Phys. A: Math. Gen. 13361
1980c J. Phys. A: Math. Gen. 133057
_-1980d J. Phys. A: Math. Gen. 133083
Arnold V 1 1978a Ordinary Differential Equations 2nd edn (Cambridge, MA: MIT Press) sec 27
__ 1978b Mathematical Methods of Classical Mechanics (New York: Springer) sec 41

- 1988 Geometrical Methods in the Theory of Ordinary Differential Equations 2nd edn (New York: Springer) sec 5
Arnold V I and Givental A B 1990 Dynamical Systems vol 4. Encyclopaedia of Mathematical Sciences vol 4 (Berlin: Springer) pl
Berry M V 1989 Proc. R. Soc. London A 4227
Berry M V and Howls C J 1990 Proc. R. Soc. London A 430653
Berry M V and Mount K E 1972 Rep. Prog. Phys. 35315
Cherry T M 1949 J. London Math. Soc. 24121
- 1950 Trans. Am. Math. Soc. 68224

Child MS (ed) 1980 Semictassical Mêhods in Molecular Scatiening and Spectroscopy (Dordrecht: Reidel)
Eu B C 1984 Semiclassical Theories of Molecular Scattering (Berlin: Springer)
Evgrafov M A and Fedoryuk M V 1966 Russian Math. Surveys 21(1) 1
Fröman N and Fröman P O 1965 JWKB Approximation, Contributions to the Theory (Amsterdam: NorthHolland)
Guillemin V and Sternberg S 1977 Geometric Asymptotics (Providence, RI: American Mathematical Society)
Hanson F B 1990 Asymptotic and Computational Analysis (Lecture Notes in Pure and Applied Mathematics
124) ed R Wong (New York: Marcel Dekker) p 211

Hanson F B and Tier C 1981 SIAM J. Appl. Math. 40113
Hanson F B and Wazwaz A M 1988 Appl. Math. Lett. 1137
Hanson R J 1968 SIAM J. Appl. Math. 161059
Hanson R J and Russell D L 1967 J. Math. Phys. 4674
Heading J 1962 An Introduction to Phase-Integral Methods (London; Methuen)
Kamran N and Olver P J 1989a J. Diff. Equat. 8032

- 1989b SIAM J. Math. Anal. 201172
-- 1990 J. Math. Anal. Appl. 145342
Kazarinoff N D 1958 Arch. Rat. Mech. Anal. 2129
Keller J B 1985 SIAM Rev. 27485
- 1986 Am. J. Phys. 54546

Keller J B and Mu Ye 1991 Ann. Phys., NY 205219
Landau L D and Lifshitz E M 1977 Quantum Mechanics. Non-Relativistic Theory. Course of Theoretical Physics vol 3 (Oxford: Pergamon) 3rd edn
Langer R E 1949 Trans. Am. Maih. Sóc. 67461
— 1955 Trans. Am. Math. Soc. 8093
1957 Trans. Am. Math. Soc. 84144
1959 Trans. Am. Math. Soc. 90113

- 1960 Bol. Soc. Mat. Mex. 5(2) 1

Lee R Y 1969 J. Math. Anal. Appl. 27501

Leung A W-K 1975 J. Math. Anal. Appl. 50560

- 1977 Trants. Am. Math. Soc. 229111

Lin C C and Rabenstein A L 1960 Trans. Am. Math. Soc. 9424

- 1969 Studies Appl. Math. 48311

Lynn R Y S and Keller J B 1970 Commun. Pure Appl. Math. 23379
McHugh J A M 1971 Arch. Hist. Exact. Sci. 7277
McKelvey R W 1955 Trans. Am. Math. Soc. 79103
Markushevich A I 1977 Theory of Functions of Complex Variable (New York: Chelsea) ch 11.3
Maslov V P and Fedoriuk M V 1981 Semi-Classical Approximation in Quantum Mechanics (Dordrecht: Reidel)
Meyer R E 1980 SIAM Rev. 22213
Nishimoto T 1973 Kōdai Math. Sem. Rep. 25458
Okubo K 1961 Proc. Japan Acad. 39544
Olver F W J 1975 Phil. Trans. R. Soc. London A 278137

- 1977a SIAM J. Math. Anal. 8127
- 1977b SIAM J. Math. Anal. 8673
- 1978 Phil. Trans. R. Soc. London A 289501

O'Malley Jr R E 1970 SIAM J. Math. Anal. 1479
Rubenfeld L A and Willner B E 1977 SIAM J. Appl. Math. 3221
Sibuya Y 1958 J. Fac. Sci. Univ. Tokyo Sect. I 7527
_- 1974 Mem. Am. Math. Soc. 1491

- 1975 Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient (Amsterdam: North-Holland)
Slavyanov S Yu 1991 Asymptotics for Solutions of the One Dimensional Schrödinger Equation (Leningrad: Leningrad University Press) (in Russian)
Tier C and Hanson F B 1981 Math. Biosci. 5389
Wasow W 1963 Trans. Am. Math. Soc. 106100
- 1970 SIAM J. Math. Anal. 1153
- 1985 Linear Turning Point Theory (New York: Springer)

Wazwaz A M and Hanson F B 1986a SIAM J. Appl. Math. 46943

- 1986b SIAM J. Appl. Math. 46962

Weinstein M I and Keller J B 1987 SIAM J. Appl. Math. 47941
Willner B E and Mahar T J 1977 Commun. Pure Appl. Math. 30315
Willner B E and Rubenfeld L A 1976 Commun. Pure Appl. Math. 29343
Zauderer E 1972 Proc. Am. Math. Soc. 31489

[^0]: \dagger Permanent address: Institute of Energy Problems of Chemical Physics, 117829 Moscow, USSR.

