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its generalizations 
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Dipartimento di Chimica dell'UniversitP, 06100 Perugia, Italy 

Received 14 January 1991, in final form 13 May 1991 

Abstract. We define the asymptotic equivalence of systems of two ordinary first-order 
differential equations with an arbitrary finite number and multiplicities of turning points. 
The theory is exemplified by the short-wave (Semiclassical) equivalence of time-independent 
one-dimensional Schriidinger equations. We describe the ret of all transformation matrices 
realizing the equivalence: the use of their determinant properties simplifies the calculations 
needed forapplicatians. For the particular care of SchrGdingerequations the transformation 
matrix can be chosen to be canonical 

1. Introduction 

Many phenomena in nuclear, atomic and molecular physics and related branches of 
science can be described within the framework of a semiclassical (i.e. short-wave) 
approach, which heavily exploits the fact that the Planck constant h may be effectively 
considered as a small parameter (e.g. see, Froman and Froman 1965, Berry and Mount 
1972, Landau and Lifshitz 1977, Child 1980, Maslov and Fedoriuk 1981, Eu 1984, 
Keller 1985). Therefore, from the mathematical viewpoint, semiclassical mechanics is 
a particular case of the asymptotic theory of differential equations. As a concrete 
example, consider the time-independent Schrodinger equation for a system of one 
degree of freedom: 

where p ( x )  = 2m(E - V ( x ) ) ,  m is the mass of the particle, V ( x )  the potential and E 
the energy. In physical applications such as the scattering theory one often has to deal 
with solutions of this equation defined throughout the domain over which the indepen- 
dent variable x ranges. One of the powerful methods of studying the solutions Y of 
equation (1) is to represent them (to an arbitrary order of h )  in terms of solutions Q 
and their first derivatives Q' of another equation of the same form, 

which is called a related or comparison equation and whose solutions are supposed 
to be known or easier to investigate (e.g. f(z) being a polynomial). This approach, 
first proposed and developed by Langer (19491, stems from techniques best known as 
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the Liouville-Green to mathematicians and J W K B  to physicists and can he thought as 
a rigorous variant of phase integral methods (see Heading 1962, Guillemin and 
Sternberg 1977). The representation may he looked for in the form 

WQP(Z) )  = M ( z ) Q ( z ) +  f i r ( z ) m z )  (3) 

where, in accordance with the asymptotic framework, the coefficients M and r are in 
fact convergent or formal series in powers of h. Langer’s method has been widely 
disseminated and employed in many works (fora  historical survey see McHugh (1971)). 
A similar approach for systems of equations was devised by Sibuya (1958). Okubo 
(1961) and Wasow (1963). A lucid exposition of the principal ideas of the method can 
he found in Langer (1960) and Wasow (1985). An extensive study of an equation of 
the form of equation (2) with the function f(z) being a polynomial is presented in 
Sibuya (1975). 

It turns out that the choice of a comparison equation (2) and the procedure of 
constructing the functions Q, M and r in equation (3) are mainly determined by the 
number and the orders of turning (or transition) points of the original equation ( I ) ,  
i.e. points x at which p ( x ) = O .  Langer (1949) considered the case of one simple (i.e. 
of first order) turning point. Later Kazarinoff (1958) and Langer (1959) treated the 
case of two turning points of first order, and McKelvey (1955) the case of one turning 
point of second order. The latter case was also studied by Lee (1969) and O’Malley 
(1970). An interesting situation of two coalescing simple turning points was dealt with 
by Olver (1975). Nishimoto (1973) and Sibuya (1974) considered the case of a simple 
turning point of any integer order. In a remarkable paper by Lynn and Keller (1970) 
the method was extended to functions p ( x )  in equation (1) having an arbitrary finite 
number of turning points of any order. This paper also treated systems of two first-order 
differential equations. Applications of the uniform asymptotic expansions obtained in 
Lynn and Keller (1970) to eigenvalue problems are exemplified by Anyanwu and 
Keller (1975) and to stability problems for Hill’s equations, by Weinstein and Keller 
(1987). 

Forthe case of a single simple turning point, Cherry (1949,1950) devised a somewhat 
different approach based on transformations of the independent variable. He used a 
comparison equation as well, hut in his construction the asymptotic expansion did not 
involve the derivative of a solution of that equation. Zauderer (1972) and Rubenfeld 
and Willner (1977) generalized Cherry’s technique tn an arbitrary number and structure 
of turning points. The results of Zauderer, Rubenfeld and Willner are formal, like 
those of Lynn and Keller. However, for a single turning point of an arbitrary order 
Willner and Rubenfeld (1976) showed that their expansions are indeed asymptotic. 
The approach of Willner and Rubenfeld (1976) resembles that of Sibuya (1974). 

Langer’s comparison equation method was also used on some higher-order 
equations. Langer (1955) obtained the uniform asymptotic expansion for a certain type 
of third-order equations, and Langer (1957) and Lin and Rabenstein (1960, 1969), of 
fourth-order equations. Anyanwu and Keller (1978) extended the construction of Lynn 
and Keller (1970) to second-order differential equations and systems of two first-order 
equations in infinite-dimensional Hilbert spaces and applied their results to obtain the 
asymptotic solution for propagation of a wave in a slowly varying waveguide. 

Lynn and Keller (1970). Zauderer (1972). Rubenfeld and Willner (1977) and 
Anyanwu and Keller (1978) considered uniform asymptotic expansions of solutions 
of a given equation, i.e. expansions valid throughout a whole domain containing several 
turning points. A closely related problem is that of connecting the Liouville-Green or 
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J W K B  approximations defined separately in different sectors with the vertex at a given 
turning point or in different turning-point-free subintervals of the range interval of the 
independent variable. Olver (1977a) found such connection formulae under the 
hypothesis that the real independent variable ranges in an interval containing a single 
turning point of any integer order. Similar results in somewhat different situations (e.g. 
for the complex independent variable) were obtained by Nishimoto (l973), Sibuya 
(1974) and Leung (1975). Then Olver (1977b) generalized his formulae to the case of 
an arbitrary finite number of turning points of any orders. These two papers by Olver 
also contain a historical survey on the connection formulae approach. Leung (1977) 
applied connection relations to eigenvalue problems. Connection formulae for an 
arbitrary number of simple turning points in the complex plane were treated in, for 
example, Evgrafov and Fedoryuk (1966). General connection formulae for equations 
in the complex plane were derived by Olver (1978). 

Uniform methods are also useful in the asymptotic analysis of differential equations 
involving simultaneously turning points and singular points. Recent research of such 
equations and examination of related problems (of which the most important ones are 
resonances and exponential precision asymptotics) are exemplified by Meyer (1980), 
Hanson and Tier (1981), Tier and Hanson (1981), Wazwaz and Hanson (1986a,b), 
Hanson and Wazwaz (1988) and Hanson (1990). The uniform and exponential 
asymptotic technique is applied for studying the Stokes phenomenon in Berry (1989) 
and Berry and Howls (1990). 

In the present paper we use the comparison equation method in Langer's formula- 
tion, following basically the procedure for constructing a representation developed by 
Lynn and Keller (1970), but while in Lynn and Keller (1970) and most related works 
the authors' attention was concentrated on the choice of the comparison equation (2) 
with a function f(z) of the prescribed form, we examine mainly the properties of a 
transformation converting solutions of equation (2) into solutions of equation (1). So, 
we consider equations ( 1 )  and (2) as having 'equal rights' and, not confining ourselves 
to any particular form of the functions p ( x )  andf(z),  describe the set of all the formal 
uniform transformations. If this set is not empty, we call the equations asympfotically 
equivalent. The solutions of asymptotically equivalent equations exhibit similar qualita- 
tive behaviour. In fact, we consider not only one-dimensional Schrodinger equations 
but arbitrary systems of two linear homogeneous first-order differential equations with 
a small parameter at the derivatives. Note that recently the problem of the sfrict 
equivalence for differential equations and operators has been tackled by group- 
theoretical methods in Kamran and Olver (1989a, b, 1990). 

For instance, Kamran and Olver (1989b) solved completely the strict equivalence 
problem for two second-order linear differential operators on the line. However, the 
asymptotic equivalence with respect to a small parameter and the strict equivalence 
involving no small parameters have proved to be drastically different. If one froze a 
value of the small parameter in two asymptotically equivalent equations (e.g. put 
h = 1.0546 x Js) and treated them as individual equations without any parameter, 
they would not, generally speaking, be strictly equivalent. Moreover, in our case they 
may well be evenfarfrom being strictly equivalent, because the small parameter stands 
at the derivatives. For example, according to Kamran and Olver (1989b), equations 
( 1 )  and (2) with x, z real and p ,  f analytic are strictly equivalent if and only if the 
functions p ( x )  and f(z) are rescaled translates of each other: ~ " ( 2 ) -  a'p(az+ b )  with 
a # 0 and b arbitrary constants. This result shows that strictly equivalent Schrodinger 
equations are met with very rarely, and almost no information on the asymptotic 
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equivalence can be obtained in the framework of strict equivalence. The solutions of 
strictly equivalent equations are quantitatively similar. 

Our second purpose is to show how very simple matrix-theoretical arguments, such 
as the properties of the transformation determinant, allow the number of integrations 
to be halved in the recursive procedure devised in Lynn and Keller (1970), which 
seems to be of importance for practical applications. The calculation and persistent 
use of the transformation determinant is the main innovation of our paper. Relevant 
examples will be given elsewhere. 

We treat only the case where all the functions are defined in some domains of the 
complex plane and are holomorphic, but an analogous theory can be developed for 
C" functions in intervals of the real line as well. 

The paper is organized as follows. After a precise definition of the asymptotic 
equivalence of systems in section 2, we discuss the relations between leading-order 
terms of asymptotically equivalent systems, the role of turning points and the indepen- 
dent variable changes in section 3. A description of all the transformation matrices 
which link the solutions of asymptotically equivalent systems and a detailed presenta- 
tion of the recursive algorithm for constructing these matrices are given in section 4. 
In section 5 we specialize the calculations of the previous section to Schrodinger 
equations with a single simple turning point. Finally, in the appendix we revisit a 
delicate existence problem for the independent variable change already discussed by 
Lynn and Keller (1970), Rubenfeld and Willner (1977) and Willner and Mahar (1977). 

2. Asymptotically equivalent systems 

Henceforth, we will denote the small parameter by  E rather than h and allow the 
functions p andf  in the equations (1) and (2) to be dependent on E. The analysis will 
be more transparent if equations (1) and (2) are written as systems: 

where @ = E d/dx 'P and R = E  d/dz Q. Note that the systems (4) and ( 5 )  are Hamil- 
tonian, to emphasize this we may rewrite them in the form 

1 
H = - (@+ply2) 

d a d J -@=---H -ly=-H 
d x  J@ d x  Jly 2 E  

and 
d J d a 

dz aR dz  aQ 
-R=--K -Q=-K 1 

2 E  
K = - ( R ~ + ~ Q ~ )  

respectively. 

necessarily Hamiltonian, systems 
Nevertheless, instead of the systems (4) and ( , we will consider more gener not 
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where A and B have the asymptotic expansions 

Ak(x) and Bk(z)  being halomorphic matrix-valued functions defined in some connected 
domains D and G of the complex plane respectively. The elements of A and B will 
be denoted as 

A = (  -P ') E=(-> :) 
with the asymptotic expansions 

m 

m 

In these notations the equations (4) and (9, which are of most importance for physical 
applications, correspond to 

p x ( x ) =  v,(xj-O 

ro(x)-l  g,(z) = 1 

V k  ( 2 )  = 7-k ( 2  j = 0 

for all k 3 0, 

and 

rk(x) 0 gk(z )=O 

for all k 3 1. 

Definition 1. The systems (6) and (7) are asymptotically equivalent if there exist a 
bijective (i.e. one-to-one) halomorphic function 9 : G + D and a matrix-valued function 
S(z ,  E ) ,  Z E  G, with the asymptotic expansion 

m 

S(z,  E ) -  Z S k ( Z ) E k  det S , ( z ) + O  
k =D 

Sk(z) being halomorphic in G, such that the change of variables 

transforms the system (7) into the system (6) 

This definition is compatible with that given in Wasow (1985). 
We call rp and S the transformation function and the transformation matrix 

respectively and will speak of equivalent systems rather than asymptotically equivalent 
ones for brevity. Note that the bijective property of rp implies d/dz p # 0 everywhere 
in  G (e.g. see, Markushevich 1977). 
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Our purpose is to find the restrictions which the equivalence imposes on the matrices 
A(x, E )  and B(z ,  E ) ,  and to describe the class of all transformation matrices S(z, E )  

provided that the transformation function p(z)  is given. 
Henceforth, a prime will denote differentiating with respect to z. Substituting 

equation (9) into equations (6) and (7) we obtain the transformation equation 

v ' ( z ) A ( ~ ( z ) ,  ENZ, E ) - S ( Z ,  E ) B ( z ,  E ) =  ES'(Z. E )  

or, in short notation, 

VAS - SB = ES' 

V ( Z )  = P'(Z) 

(10) 

where we have set 

for the sake of brevity. 
Using the well known matrix-theoretical relation 

(det S ) ' =  (det S )  tr(S-'S') 

valid for any function S ( z )  such that det S ( z )  # 0 (e.g. see, Arnold (1978a), where this 
relation is proven in a particular case of Wronskians of systems of linear differential 
equations) and recalling that tr(S-'AS) = tr A, we obtain from equation (10) that 

7 tr A-tr  B 
(det S) '=det S 

E 

3. Normalization of zeroth-order terms 

Consider a system 

where .$ is a complex variable and the matrix L has the asymptotic expansion 

with holomorphic coefficients Lk([) 

Definition 2. A value & of the independent variable f is a turning point of the system 
(12) if the two eigenvalues of the matrix Lo(.$*) are equal, i.e. 4 det Lo(#*) = (tr 
The order of a turning point f* is the order of the number f* as a zero of the function 
4 det Lo( f )  - (tr Lo( e))*,  A turning point f* is non-degenerate if the Jordan structure 
of L,(c*) is a single block of order two, and degenerate if &(e*) is diagonal. 

Example. If Lo(() is of the form 

then the turning points of the system (12) are the zeros of the function qo(.$). All these 
turning points are non-degenerate. 
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Lemma. If systems ( 6 )  and (7) are equivalent then they have the same number of 
turning points of the same orders and the same degeneracy types. Moreover, every 
transformation function 9 ( z )  maps the turning points of the system (7) to the corre- 
sponding turning points of the system (6). The relations 

r12 det A. = det B, 

det A,(tr B J 2  = det B,(tr A,,)2 

q tr A,, = tr Bo 
(14) 

hold, where q = q'= d/dz p. Finally, the systems with matrices 

A ( X ,  &)-tr t r ~ , , ( ~ )  and B ( Z ,  tr B,(z) 

are also equivalent with the same p ( z )  and S(z ,  E )  ( I  being 2 x 2  unity matrix) 

Proof: Equating zeroth-order terms in the transformation equation (IO) we obtain 

TAoSo = SOB, detS,#O 

which immediately implies all the statements of the lemma (the last statement is obvious 
in view of the fact that 

~ ( A - t l t r A , , ) S - S ( B - f ~ t r B , ) = q A S - S B  

provided 7 tr A .  = tr Bo). 

contains no singularity. 
Since q tr A. = tr E,, for equivalent systems, the right-hand side of equation ( I  1) 

Below we will consider only the systems (12) such that tr Lo(( )  0. The lemma 
above provides us with a justification of this confinement, because tr(L,-fl tr Lo) = 0. 
Another justification stems from the fact that the solutions of the system d/df  U = A U 
and d / d f f i = ( A + A l ) f i  with a scalar function A(( )  are linked by a simple relation 

Finally, we are mostly interested in the systems (12) with matrices Lo(&) of the form 
(13) for which tr L o ( ( )  = 0. 

Lynn and Keller (1970, section 9) declared that for any system (12) with tr Lo(.$) = 0 
there exists a holomorphic matrix-valued function V(f) such that det V(f) # 0 and 

provided that all the turning points of the system (12) are non-degenerate. Then the 
system 

is clearly equivalent to the original one and 

In view of this and being oriented to the physical applications, we will consider below 
only the systems (12) with the matrix Lo(.$) of the form (13). 
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Degenerate turning points of second-order systems of linear differential equations 

Lynn and Keller (1970, section 9) treated only the case of systems (6) and (7) for 
were extensively studied in Hanson and Russell (1967) and Hanson (1968). 

which the matrix A has a normalized zeroth-order term 

whereas the matrix B is entirely off diagonal with the right upper element equal to 
unity, i.e. it is o i  the iorm ( 5 ) :  

f ( z ,  E )  being a polynomial in z 

4. Recursive procedure 

Consider two systems (6) and (7) with normalized zeroth-order terms in the asymptotic 
expansions of the matrices A ( x ,  E )  and B(z ,  E ) :  

Accordingto thenotation(8) t h i s m e a n s ~ o ( x ) = ~ o ( x ) ~ O , u O ( z ) = ~ ~ ( z ) ~ O ,  r o ( x ) = l ,  
go(z) 1. We will suppose that in the domain D the function po  has n + 1 P 1 zeros 
xo, x , ,  . . . , x,  of orders m,, m , ,  . . . , m, which are the turning points of the system (6), 
and in the domain G the function fo has n + 1 zeros z,, z I , .  . . , z, of the same orders 
* i o ,  f i l l , .  . . , r n n  wuicu  arc LIID ~ u c r u u g  purrrrb ut LUC r y r ~ i r i  ( I ) .  L I I C  r c i a u o ~ ~ s  {L+) 111 

this case reduce to 

_. ... L:-L ~ - -  .I.̂  I :-- --:-A- -'..I.- /_l, TL. ..,.*:.-. 1 . 4 ,  2 -  

? 2 P o = f o  (15)  

or, in full notation, 

('pYz))'Po(dz)) =fo(z) 

The existence of a one-to-one holomorphic function 'p : G + D mapping each zj 
into xj,  Os j s  n, and satisfying (15) is a rather complicated problem, and we postpone 
its discussion to the appendix. Here we only point out that equation (15) implies 

for any corresponding couples x i ,  xj and zi, zj of turning points. I n  the case where the 
systems (6) and (7) represent one-dimensional Schrodinger equations, the equalities 
(16) can be recognized as equivalences of the phase infegrals of importance in the 
physical applications. 

Now, assuming the function ~ ( z )  to be chosen, we start looking for the solutions 
S(zi E )  of equation (10). Before formulating the main theorem we make two following 
remarks. 

Remark 1. Provided det S(z,, E )  is known, det S(z, E )  for any 
very easily using equation (1 1 ). 

in  G can be calculated 
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Remark 2. If S(z, E )  is a solution of equation (lo),  so is W(E)S(Z ,  E )  for any power 
series W ( E )  with a non-zero constant term. The following theorem ensures that all the 
solutions of equation (10) can be obtained from a particular one in this way. 

Henceforth, we will fix a particular determination of the square root 4. 

?”heorem. Under the hypotheses on A , ( x ) ,  Bo(z )  and q ( z )  stated above, the transforma- 
tion equation (10) has a formal solution S(z, E )  if and only if for each k a l  the 
off-diagonal elements pk,  r k , f x ,  gk of the matrices A , ( x )  and Bk(z) (see equation (8)) 
satisfy the conditions 

d’ 
dz’ 

for all Os j c  n and O s  s c m, - 2  and 

(17)  z:: - (~2Pk-fx+fOrk-fOgA+ T k ) l z ,  = o  

for all 1 S j S n (totally mo+ m ,  + , . . + m. - 1 conditions). Here T, = 0 and for k a 2 
the Tk is some expression involving the elements of the matrices A,,, . . . , Ax-,  , 
B o , .  . . , Bk-, .  If these conditions are satisfied, then for every sequence w0,  w , ,  0 2 , .  , . 
of complex numbers with w,# 0 equation (10) has exactly two solutions S‘”(z, E )  and 
S‘2J(z, E )  = -S(”(z, E )  subject to 

m 
det S(z,, F ) -  1 w ~ E ’ .  ( 1 9 )  

k = O  

The terms of the asymptotic expansions of these solutions can be computed by a 
recursive procedure containing a single operation of integrating at each step. 

ProoJ First of all, introduce the following short notation. For any two sequences 
( u o ,  U,, U*, . . .) and (uo ,  U,, v 2 , ,  . .) of numbers or functions we will write 

k 

( u v ) k =  x u k - # U z  
r=o 

k-1 

[ u u ] k =  x uk-tu, 
,=o 

A-2 

{ u v ) k =  x uk-tu, 
,=o 

( U U ) k =  1 uk- tu ,  
1 1 1  

(in particular, [ U V ] ~ =  { U V ) ~  = { u v } ,  = (uu),,=(uu), =O). 
The elements of S will be denoted as 

s=(” A N  r )  
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with the asymptotic expansions 

uz, €1- 1 rk(Z)Ek. ... 
k = O  

Finally, we will use the notation 

a = ? p - u  b = T u - r  

c = q / * - r  d = v u - u  

(see equation (8)) and 

w = a + b = c + d  = '7 tr  A- t r  B. 

In this notation the transformation equation (10) can be rewritten as a sequence 

k 2 0 (here M-,  = N - ,  = L, = A - ,  = 0 )  while equation I) an 
m 

det S(z, e ) - (  ? e k w k )  exp( E' 1: w k + , ( z )  d r )  - 1 f l X ( z ) e k  
k = O  k = O  k = O  

19) give 
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(here the equality U :  = XL.+, + q X i + ,  is to be understood in the way that Y :  is obtained 
multiplying X i + ,  by 7 and adding it to XL+, , and similarly for all the other equalities). 
Inversely, 

x:= Y : _ , - q Y ;  x;=q-y V:_,+f"Y:)  

(where YL, and Y?, are to be ignored). 
From Y: and Y: we can respectively express M k  and A,:  

(26) f o  
Mk = 11Nk + &. Ax = -- Tk + p k  

'I 

where 

(27) 

Note that lk and p x  involve only the elements of A, and E, with Is k and SI with 
I <  k. I n  particular, io= p o =  0 and equation (26) for k = O  reduces to 

i k = [ c r l k - [ g M l k  + 1 1 [ r N l k - r i - t  

Pr  = [ b N ] k  - [ g A l k  - ' I [ p r l k  - NL-1. 

(28) 

Substituting equation (26) into those for U: and Y:  we arrive, after some simple 
algebra, at the system for Nk and rk :  

f" M u = v N o  Au = --Tu. 
11 

2 q N ; = - q ' N , + ' 1 w , N , - i , r , + C ,  

f o  I f" 2 - r; = - (:) rk +- w,Tk + f ,  N k  + Dk 
11 11 

where 

ck = ( a M ) k + t +  q { b N } k + j  + { f - V 2 P .  r ) k + t  + d r - g ,  A ) k + t + a , i *  + 'I (r i -&)Pk - i I  
D x = - { d A ) , + , + I l p u { c r } k + , + { f u r - / ;  N ) * + ,  + ' I { P - P o g ,  M ) k + , - d t P h  (30) 

+ w(PI -POgl)Lk+Pk 
(C, and Dk involve only the elements of A,, E, with Is k + 1 and SI with l < k )  and 
we denote 

(31) fk  = 'I'P2 -fi +fork - f k ? k .  

In particular, C, = Do = f o  = 0. 
The determinant equation (22) can be rewritten as a sequence of equations: 

( M N ) ,  - ( r A ) k  =ah. (32) 

After substituting equations (23) and (28) into equation (32) for k = O ,  the latter 
equation takes the form 

(33) 7 N a + - r u -  fo 2 -  w,,E' 
11 

whereas after substituting equations (26) for k 2 1 and (28) into equation (32) for the 
same k the latter equation takes the form 

(34) 2 h  27 N o  NA + - 1'Jk = RI + 5~ 
'I 
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where 

~ : x = l ' , p , - N , 5 k + ( T A ) t - ( M N ) , .  (35) 
Ek involves only the elements of A,, B, with I S  k and S, with I <  k. 

Now we can start successively solving the sequence of systems (29). 

4.1. Thefirst step: k = O  

The system (29) for k = 0 is a system of two first-order homogeneous linear differential 
equations. Every its solution (No,  r,) satisfies equation (33), which enables us to solve 
this system explicitly. Its general solution subject to equation (33) is 

E 
No(z)=-(aocos 8+p,sin 8) 

ro(z)  = E 4 (a, sin B - P o  cos 8 )  

J;; 

where a, and Po are constants such that ai+&= wo and 

f 1  being given by equation (31) .  

condition for r,(z) to be regular at z, is Po = 0. So, 
As f o ( z o ) = O  and B(zo)=O whenever 8 ( z )  is well defined near zo, a necessary 

a , = w ,  

and 

Moreover, since fo(z) vanishes at the turning points z, to the orders m,, O s j s n ,  
for ro(z) to be regular at each z, one has to require that S(z) =O((z-z,)"','*) as z +  z,. 
Thisisthecaseiff,(z)=O[(z-z,)"~-']foreachOsj~nand8(z,)=Oforeachl~j~n. 
Thus, we arrive at the regularity conditions 

O s j S n  0 S s S m, - 2 (39) 
I, 2 dz = 0 I S j S n  

which coincide with the conditions Zi and Z: (see equations (17)  and (18)) .  
If these conditions are satisfied, the functions No(z) and r,(z) defined by equation 

(38) are indeed holomorphic in G. We should like to specifically emphasize the fact 
that an ambiguity arising from the determination of the square root disappears 
provided that 1 ,  satisfies equations (39) and (40). This follows from the oddness of 
the sine and the evenness of the cosine. 



Asymptotic equivalence of Schrodinger equations 4487 

4.2. The subsequent steps: ka 1 

The general solution of the system (29) for k 3 1 is 

E 
N k ( z )  =- (ak cos O+px sin e) J; 

where 

yk and 6,  being arbitrary constants, and 8 being given by equation (37). 

px(zo) =0, which is equivalent to 
As f ( z o )  = 0 and O(zJ = 0, a necessary condition for I-,( z )  to be regular at z,, is 

sk=O (44) 
because pk(zo) = Sk whenever p k ( z )  is well defined near zo. Moreover, since f o ( z )  = 
O [ ( Z - Z , ) ~ J ]  as z + z ,  for each turning point z,, for r k ( z )  to be regular at z, one has 
torequirethatpx(z)=O[(z-z,)",'2] as z +  z,,OSj<n.Thus,wearrive at theregularity 
conditions 

1; ($sin 8 - 4 D k  cos 8 )  $ = O  1 S j s n .  

If these conditions are satisfied, the functions N , ( z )  and r,(z) defined by equation 
(41) in which ah and p, are given by equations (42)-(44) are indeed holomorphic in 
C. In particular, an ambiguity arising from the determination of the square root Jfoo 
disappears. 

Suppose that the regularity conditions (45) and (46) are satisfied and one desires 
to calculate the functions N k ( z )  and r,(z) according to equations (41)-(44). Each of 
the equations (42) and (43) contains an integral. Nevertheless, one has to compute 
the integral in formula (43) for p k ( z )  only, because a X ( z )  can be found very easily 
using equation (34) provided that C l ,  has been already calculated from equation (22). 
Indeed, substituting equations (38) and (41) into equation (34) we obtain 

Cl ,+?: ,  
a, =- 

2a,E2 (47) 

Here Z, is given by equation (35)  and Clh is defined by equation (22). From the latter 
equation it is not hard to derive that 

R, = w k E 2 + .  . . (48) 
where . . . denotes terms involving only U",  . . . , w h - , .  Equations (421, (47) and (48) 
show how yh is uniquely determined by wk.  Having calculated Nk and r l ,  one can 
find Mk and A, by equation (26). 
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Finally, we can rewrite the expressions (30) for Ck and Dk in the form 

ck 
Dk = - & + I &  + 7 / P r c k +  I i-o + ( h r k +  I -h+ ) No + 11( Pk+ I -PO&+, )MO + Xk 

ak+1 MO + tlh+ I No + ( fx+  I - t12Pk+ i  + 11 ( r k + i  - &'k+ I )Ao K X  
(49) 

K~ and x k  involve only the elements of A,, El with I s  k and SI with I<  k. Substituting 
equations (28) and (38) into equation (49) we obtain, after straightforward algebra, that 

where f k + ,  is given by equation (31) and 

nktl =- ( ~ . ? , y ,  cos e - 4 K k  sin e). 
a& 

So, regularity conditions (45) and (46) gain the form ZL+, -Z i+ ,  (see equations (17) 
and (18)) with nk+, in place of Tk+, .  

determining 
the matrices So, S, , . , . , S k - l .  Nevertheless, if all the regularity conditions Z ;  - Z: with 
1 S IS k are satisfied, regularity conditions (45) and (46) do  not depend on these 
constants. In other words, if a particular collection ( a y ' ,  o:", . . . , w:",)  of values of 
these constants satisfies conditions (45) and (46), so does any other collection 
(ab2), O J ; ~ ) ,  . . . , w;*?,). Indeed, if matrices Sb"(z), Si ')(z), . . . , S:"(z) are the holomor- 
phic solutions of the systems (YA- Y:),  ( Y :  - Yt ) ,  . . . , ( Y :  - Y:)  (see equation (25)) 
for ao= a y ) ,  o, = wi" ,  . . . , w k - ,  = oy!,,, ox = U:  with some w :  then the matrices 
S y ' ( z ) ,  S:"(z), . . . , Sf'(z) defined by 

The expression (SO) for nk+, involves the constants a,, w , ,  . . . , 

are the holomorphic solutions of the same systems for ao= a:", U, = m y ' , .  . . , ok-, = 
w k - I ,  w k = w :  (the square roots in equation (51) are determined so that the square 
root on the left-hand side is equal to ~ : " + O ( E ) ,  and the square root on the right-hand 
side, to a?'+O(&)).  Hence, conditions (45) and (46) are satisfied for the collection 
(aY' ,w:" ,  ..., of?,), too. Thus we can define Tk+, as nk+, calculated at a0=l ,  
w ,  =. . . = w k - ,  = 0 and obtain the regularity conditions Zk+, - Z : + ,  . The proof of the 
theorem is completed. 

( 2 )  

5. Application to the case of a single simple turning point 

For 2 x 2 matrices, the Lie algebra sp(2, C) of complex infinitesimally symplectic 
matrices (i.e. those determining Hamiltonian linear differential equations) is isomorphic 
to the Lie algebra sI(2, C) of matrices with trace zero, and correspondingiy the Lie 
group SP(2, C )  of complex symplectic matrices (i.e. those determining canonical linear 
transformations) is isomorphic to the Lie group SL(2, C) of matrices with determinant 
unity (e.g. see, Arnold (1978b, 1988) or Arnold and Givental (1990)). If the matrices 
A and B in equations (6) and (7)  are of trace zero, which is the case, for example, 
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for systems corresponding to one-dimensional Schrodinger equations, then in accord- 
ance with equation (11) det S is independent of z and in equation (22) R k ( z ) - w r .  
According to the theorem of the previous section we can set q,= 1, wk = O  for ka 1 
and look for the transformation matrix S(z, E )  within the class of symplectic matrices. 
If  the transformation equation (10) is solvable it has exactly two symplectic solutions 

Unfortunately, the particular case of systems (4) and (5) corresponds to no sim- 
plifications in our procedure. From the regularity conditions Z :  and 2: (see equations 
(17) and (18)) for k z 2  together with equations (27), (30), (49) and (50) for k >  1 it 
is seen that even when p ( x ,  E )  = p o ( x )  does not depend on E, one has to take into 
account higher-order terms f,(z), f2(z), . . . , of f(zj to achieve the equivalence of the 
systems. 

The only situation where some remarkable simplifications take place is the case of 
a single simple turning point. In this case there are no regularity conditions to be 
satisfied, and it becomes possible to set p ( x ,  E) = p o ( x ) ,  f ( z ,  E )  =Jb(z), which ieads to 
the following result. 

Prnposition. If the matrices A and B in equations (6) and (7) have the form 

S")  and s'2)= -S"' 

and the domains of independent variables x and z contain single first-order turning 
points xo and zo respectively, then the terms S k ( z )  of the symplectic transformation 
matrix S(z, E )  are diagonal for k even and off diagonal for k odd. 

m . . r  T , - J . . * L - L  _._^. L ̂ ^ ^ ^  ^ P A L  ------. rr"0,. """er L,lC rryput'lcscs "1 LllC pcupu~n~uu,  

~ ~ = - r ~ - ,  p k = - N ; _ ,  

(see equation (27)) 

f" 
M~ = ' I ~ k  - r ;-, A k = - - r h - N i - ,  

rl 

(see equation (26)) 

ex = r:-, = K k  Oh = - Ni-, = xk 

(see equations (30) and (49)), and the equations (29) take the form 

277 N i = - 0' Nh + r;_ I 

Moreover, in this case E ( z ) -  1 (see equation (24)) and e(z)=O (see equation (31) 

we arrive at 
for k =  I znd eqllation (??)). so, lccording to equations !?S j7  (?R)? !4!)-(44) and (47) 



4490 V Aquilanri et al 

and 

for k a  1. The symplectic property of the matrix S implies that oh = O  for k 3 1. Now 
from equations (52)-(54) it immediately follows by induction that r k = A k  = O  for k 
even and Nk = Mh = 0 for k odd. The proposition is proven. Note that So = 
no diag(\/;;, l / f i ) .  Moreover, as Nk can he found without integration and T, = 0 for 
k even, we arrive at the conclusion that to calculate S h ( z )  for k even one has to perform 
no integrations at  all. Thus, under the hypotheses of the proposition, the number of 
integrations to be fulfilled is two times less than in the general case. 
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Appendix. On the existence problem for the transformation function 

Let G be a connected domain in the complex plane C and let holomorphic functiond 
po: U2 -* C and fo : G + C have zeros xo, x, , . . . , x. and zo , z ,  , . . . , z. respectively, of the 
same orders m,, m l , .  . . , m,. Suppose that 

( I  G j 6 n ) ,  for a particular determination of the square roots along the integration 
paths. Lynn and Keller (1970, section 2 and appendix) declared that under these 
hypotheses there always exists a holomorphic function 'p: G +U2 such that: 

(i) 'p(z,)=x, f o r O s j 6 n ;  
(ii) j ~ c ~ " ~ d x = J ~ ~ , ~ d z  for z in G (note that this equality implies 

(iii) ' p ' ( z )  # 0 everywhere in G. 
equ2tion (E)); 

(In fact, Lynn and Keller considered only the case where p d x )  is a polynomial 

po(x)=c n (x-x,)" c = const 
,=o 

of degree m,+ m , + .  . .+ m".) In reality, this statement is not correct, as the following 
counterexample shows. 

In this counterexample pu and 1;) are polynomials of degree six, each having three 
double roots. Namely, 

po(x) = x2(x-a) '(x - b)' 
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where a and b are arbitrary real positive constants such that a < b < 2a, and 

f , ( z ) = ( z + U ) ' z 2 ( z - u ) ~  

u 3 ( u + 2 u )  = b'(2a - b )  

where real positive constants U and U are determined by the system 

U 3 ( U + 2 u )  = 0 3 ( 2 b - a )  

(it is not hard to prove that this system has a unique solution (U, U )  with U > 0, U > 0). 
Having determined a and Jfoo as 

x ( x  - a ) ( x  - b )  

and 

Jfuo= - ( 2 +  v ) z ( z - u )  

we obtain 

b'(2a - b )  
12 

J ,  = lob a d x  = 1; m d z  = 

and 

a ' ( 2 b - a )  
12 

J 2 =  1; m d x  = /:"m dz = 

Thus, all the hypotheses of the statement cited above are satisfied with n = 2 ,  
m, = m, = m2 = 2, x, = 0, x I  = b, x2 = a, zo = 0, z ,  = U and z2 = -0.  As G one can take 
an arbitrarily small complex neighbourhood of the segment --vs z < U of the real axis. 
On the other hand, there exists no halomorphic function p :  G + @  satisfying the 
conditions (i)-(iii) above. Indeed, let 

x4 ( a + b ) x 3  abx2 +- 
3 2 

P ( x )  = 1: Jp,(x) dx =T- 

and 

24 ( u - u ) z 3  111122 +- F(z)  = J Z : m d z  = -;+ 3 2 

Suppose that a continuous function p : G +  C satisfies p(0) = 0 and P(p(z))  = F ( z ) .  
If a real L increases from 0 to U value F(z )  monotonously increases from 0 to J , ,  The 
polynomial P ( x ) - J ,  hasthedoubleroot bandtwosimplerootsx"'<OandO<x"'<a. 
In the interval O<F< J, the equation for p 

P(rp)=F 
has exactly two solutions pp"'( F) < p12'(F) which depend on F continuously and tend 
to zero as F+O. For these solutions p i " ( J , )  =xi ' )  and p'2'(Jl) = x i 2 ' .  So, either Q(U) = 
xi" or ~ ( u ) = x ' ~ '  and the function 9 ( z )  cannot satisfy the condition pp(u)= b. 

From this counterexample one can also easily understand at which point the 
argument of Lynn and Keller fails. Indeed, let the equalities (55) hold, p ( r o )  = x, and 
a function p ( r )  satisfy the requirements (ii) and (iii) above. Then the equalities ( A l )  
will obviously remain valid if one replaces x! by p(z,), l S j < n .  But, despite the 
reasoning by Lynn and Keller, this does not imply that p ( z , ) = x , .  

An analogous counterexample is provided by polynomials 

p,(x)  =x ' (x  - a)'(b - x )  
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and 

f"(2) = ( z +  U ) * Z ' ( U  - 2 )  

of degree five, where a and b are arbitrary real positive constants subject to a < b < 1 ~ 1 4 ,  
while real positive constants U and u > 4 u / 3  are determined by the system 

( U +  u ) ~ ( ~ u - ~ u ) ' =  ( b  - a ) ' ( 3 a  +4b)' 

(it is not hard to prove that this system has a unique solution (U, U )  with U > 0 and 

These counterexamples show that the existence problem for the change x = ' p ( z )  
of the independent variable is rather delicate. The search for sufficient conditions 
(presumably in terms of the configuration of the Stokes lines; see Heading 1962, 
Evgrafov and Fedoryuk 1966, Wasow 1970, 1985, Sibuya 1975) for the existence of p 
is beyond the present study. 

Note, however, that the failure of the phase integral equivalence (16) to ensure the 
existence of a transformation function is an essentially complex effect. In the case of 
infinitely differentiable functions in intervals of the real line the equalities 

u ~ ( ~ u + ~ u ) ~ =  b5(7a-46)' 

U >  4 ~ 1 3 j .  

( O S j S n - I )  under the hypothesis 

X0<XI<  ... x, and zo<z, <.  . . Z" 

(which makes no sense in the complex case) guarantee the existence of the desired 
function 'p. (For details and the proof see Rubenfeld and Willner (1977).) The possibility 
to achieve the phase integral equivalences in the real case with the function p , ( x )  being 
a polynomial is shown by Willner and Mahar (1977). 

Note added. After this paper had been submitted important results by Anyanwu (1988a. b, c) came to our 
attention. Anyanwu (19%) has constructed the formal uniform asymptotic theory for differential equations 
involving simultaneously arbitrary finite numbers of turning points and singular points of any orders. His 
approach is based on the comparison equalion method in Langer's spirit and is entirely parallel to the 
theory by Lynn and Keller (1970) (in contrast to the technique of  Warwar and Hanron (1986a. b) which 
has also been developed for the case of simultmeous presence of zeroes and poles). Similarly to Lynn and 
Keller (1970). Anyanwu (1988a) considers recond-order equations and systems of two first-order equations 
as well. Moreover, in Anyanwu's paper, there i s  a crucial lemma concerning the existence ofthe independent 
variable change analogous to that by Lynn and Keller. As in Lynn and Keller (1970). the proof of this 
lemma in Anyanwu (19882) is given in the appendix and contains the same inaccuracy (see the appendix 

Anyanwu (1988b) specializes the general expansion of  Anyanwu (1988a) for the cases (.2), (-11. ( I ,  -2), 
( l , . l ) ,  (l , l , .2),  (2,-2),and ( - ] , - I )  wherenumbers I , 2 , - I , a n d - Z d e n a t e a  simpleturningpoint,adauble 
turning point, a simple singular paint and a double singular point, respectively. Note that the cases ( - I )  
and (-2) were treated in Anyanwu (1982). 

In Anyanwu (1988~).  expansions found in Anyanwu (1988a. b)  are used to salve boundary and eigenvalue 
problems for second-order differenlid equations with singular and turning points. 

We believe that the equivalence approach with transformation determinant arguments proposed in the 
present paper can be carried over mururis murandir to equations with turning and singular points, also. 

The theory devised i n  Anyanwu (1988a, b, c) is applied to obtain uniform approximations for the natural 
modes and frequencies of some ucwstical resonaiors in Anyanwu and Nwoke (1988). 

Among numerous physical applications of uniform asymptotic expansions by Lynn and Keller (1970). 
we mention here the eigenvalue problems for inhomogeneous dielectric (Arnold l980a. b )  and clad planar 
(Arnold 1980~. d )  waveguides, solving the one-dimensional SchrGdinger equation for scattering o f a  panicle 
by s potential barrier and far bound states of a potential well (Keller 1986). and calculating the change in 

of present paper). 
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the action adiabatic invariant for a harmonic oscillator with a slowly varying frequency (Keller and Mu 
1991). All these problems can be reduced to cqualiona with lwu  simple turning points. 

For a very recent survey an the asymptotic theory for one-dimensional SchrBdinger equations, see 
Slavvanov (1991). 

References 

..........*. I .no* a ,..1 -~.. ,. L "l, r~~ n. ... ""y""w" " U , 701  I I I U l n .  rr"C CUm". m r , .  0°C.  Y ,  L,, 

~ 1988a J. Morh. A n d  Appl. 134 329 
~ 1988h J. Math. A n d  Appl. 134 355 
~ 1988c J. Marh. Anal. Appl. 134 379 
Anyanwu D U and Keller J B 1975 Commun. Pure Appl. Morh. 28 753 
- 1978 Commun. Pure Appl. Mafh. 31 107 
Anyanwu D U and Nwoke C 1988 J.  Math. Anal, Appl. 134 396 
Arnold I M 1980a 1 Phyr. A :  Moth. Gen. 13 347 
__ 1980b 1. Phyr. A: Morh. Gen. 13 361 
~ 1980c J. Phvs. A: Mnrh. Gen. 13 3057 
~ 1980d J. Phys. A: Marh. Gen. 13 3083 
Arnold V I 1978a Ordinary Differenriol Equarions 2nd edn (Cambridge, MA: MIT Press) sec 27 
- 1978h Marhemarid Merhodr of Classical Meehonicr (New York: Springer) sec41 
- 1988 Geomerricnl Methods in the 7Reory of Ordinary Differenrial Equalions 2nd edn (New York: 

Arnold Y I and  Givental A B 1990 Dynamical Systems YOI 4. Encyelopoedlo of Morhemnricnl Sciences voI 4 

Berry M V 1989 Proc. R. Soc. London A 422 7 
Berry M V and Howls C J 1990 Proc. R. Soc. London A 430 653 
Berry M V and Mount K E 1972 Rep. Prog. Phys. 35 315 
Cherry T M 1949 J.  London Marh. Soc. 24 121 
- 1950 Trans. Am. Marh. Soc. 68 224 
Crll," ,", J ,e", ,re" Jem,cI".)I,uuI l"IC,""UJ ,n ,","IcuuI"r a'""rnng "n" Jpectrw.~c",>y ,Y","rcrll , .  "SIUC,, 

Eu B C 1984 Semielosrlcol 7Reories of Molerulor Scatrering (Berlin: Springer1 
Evgrafav M A and Fedoryuk M V 1966 Rursinn Morh. Surveys 2 l ( l l  1 
FrBman N and FrBman P 0 1965 JWKB Approximalion, Conrrihurions IO [he Theory (Amsterdam: North- 

Guillemin V and Sternberg S 1977 Geomerrie Asymproricr (Providence, RI: American Mathematical Society) 
Hanson F B 1990 Asymproric and Compurorionol Anolysis (Leelure Note3 in Pure and Applied Morhemaries 

~~ 124) ed R Wonp (New York Marcel Dekker) p 211 
Hanson F B and Tier C 1981 S I A M  J. Appl. Math. 40 113 
Hanron F B and Wazwar A M 1988 Appl. Marh. Leu. I 137 
Hanson R J 1968 S I A M  J.  Appl. Morh. 16 1059 
Hanson R J and Russell D L 1967 J. Math. Phys. 46 74 
Heading J 1962 An Inrroduction to Phore-lnregral Methods (London: Methuen) 
Kamran N and Olver P J 1989a J. Di@ Equal. 80 32 
- 1989b S I A M  J.  Math. Anal. 20 1172 
- 1990 J. Moth. Anal. Appl. 145 342 
Kazarinoff N D 1958 Arch. Rar. Meeh. Anal. 2 129 
Keller J B 1985 S I A M  Rev. 21 485 

~ 1986 Am. 3. Php. 54 546 
Keller J B and Mu Ye 1991 Ann. Php.. NY 205 219 
Landau L D and Lifrhitz E M 1977 Quonrum Mechonier. Non-Relarivirtic ?%eon.. Course gf Jheorrriral 

Physics YOI 3 (Oxford: Pergamon) 3rd edn 
ianger ii E I949 Trans. Am. Xath. Soc. 67 461 
- 1955 Trans. Am. Morh. Soc. 80 93 
- 1957 Tram Am. Marh. Soc. 84 144 
- 1959 Tram Am. Marh. Soc. 90 113 
- 1960 Bo/. Soc. Mor. Mex. 5(2) I 
Lee R Y 1969 J. Morh. A n d  Appl. 21 501 

Springer) sec 5 

(Berlin: Springer) p I 

,.~.,> .,? , ~ > >  r ~ ~ ~ : ~ l - ~ ~ ! ~ - ,  .,.., ~ . , ~ ! ~ ~  .,., ~ r :... ..., 0 -.. >...L.. n.:>.,\ 

Holland) 



4494 V Aquilanti et a1 

Leung A W-K 1975 J.  Morh. Anof. Appl. 50 560 
- 1977 Tram Am. Molh. Soc. 229 I I I 
Lin C C and Rabenstein A L 1960 Trans. Am. Marh. Soc. 94 24 
- 1969 Studies Appl. Marh. 48 31 I 
Lynn R Y S and Keller J B 1970 Commun. Pure Appl. Morh. 23 379 
McHugh J A M 1971 Awh. Hisr. Exncr. Sci. 7 277 
McKelvey R W 1955 Trons. Am. Morh. Soc. 79 103 
Markushevich A I 1977 Theory of Funerions ofcomplex Variable ( N e w  York: Chelsea) ch 11.3 
Maslov V Pand Fedariuk M V 1981 Semi-Clsssieal Approximarion in Quanrum Mechanics (Dordrechl: Reidel) 
Meyer R E 1980 SIAM Rev. 22 213 
Nishimoto T 1973 Kddai Math. Sem. Rep. 25 458 
Okuba K 1961 Proc. Japan Acad. 39 544 
Olver F W J 1975 Phil. Trans. R. Soc. London A 278 137 
- 1977a SIAM J. Marh. Anal. 8 127 
- l977b S I A M 1  Molh. Anal. 8 673 
- 1978 Phil. Trans. R. Soc. London A 289 501 
OMalley Jr R E 1970 SIAM J. Molh. A n d .  I 479 
Rubenfcld L A and Willner B E 1977 SIAM J. Appl. Marh. 32 21 
Sibuya Y 1958 J. Foe. Sei. Uniu. Tokyo Secr. I 7 527 
- 1974 Mem. Am. Morh. Soc. 149 I 
- 1975 Global Theory ofa Second Order Linear Ordinary Differenrial Equorion wirh (I Polynomial Cogfficienr 

(Amsterdam: North-Holland) 
Slavyanov S Yu 1991 Asymprorics for Solutions of rhe One Dimensional Sehriidinger Equorion (Leningrad: 

Leningrad University Press) (in Russian) 
Tier C and Hanson F B 1981 Morh. Biosci. 53 89 
Wasow W 1963 Tmns. Am. Marh. Soc. 106 100 
- 1970 SIAM J. Mofh. Anal. I 153 
- 1985 Linear Turning Poinf Theory (New York: Springer) 
Wazwaz A M and Hanson F B 1986a SIAM J. Appl. Mnrh. 46 943 
- 1986b SIAM J. Appl. Marh. 46 962 
Weinstein M I and Keller J B 1987 S I A M  J. Appl. Marh. 47 941 
Willner B E and Mahar T J 1977 Commun. Pure Appl. Marh. 30 315 
Willner B E and Rubenfcld L A  1976 Commun. Pure Appl. Marh. 29 343 
Zauderer E 1972 Proc. Am. Morh. Soc. 31 489 


